Lectures on Duality in Conduced Matter Phyños

Eduardo Fradkin
Department of Physics and Institute for
Condensed matter Theory
University of Illinois
Lectures at the Prination Simmer School an Condensed Matter Physics
Prination Univeraty, 10-14 July, 2023

Outline

* Electronagretic Duality and the denalitg of forms
* Ising Models: Kramers - Wannier dualitie
* Gauge theorg and duality
* Vortices and Mormpoles
* Particle - Vortax duality
* Boson-Fermion mappings as derelity
* Duah'y and the Fractind Quantur Hall Effect

Electromagnetic Duality (Dirac, 1931)

$$
\begin{array}{cl}
\vec{\nabla} \cdot \vec{E}=\rho, & \vec{\nabla} \cdot \vec{B}=0 \\
\vec{\nabla} \times \vec{B}-\frac{1}{c} \frac{\partial \vec{E}}{\partial t}=\vec{j}, & \vec{\nabla} \times \vec{E}+\frac{1}{c} \frac{\partial \vec{B}}{\partial t}=0
\end{array}
$$

* EM Duality: $\vec{E} \leftrightarrow \vec{B} \quad$ (if $\rho=0$ and $\vec{j}=0$)
* electric charge $e \longleftrightarrow$ magnetic monopole m
* Dirac quantization: $e m=2 \pi$
* $\quad \partial_{\mu} F^{\mu \nu}=j^{\nu} ; \quad \partial^{\mu} F_{\mu \nu}^{*}=0 ; \quad F_{\mu \nu}^{*} \equiv \frac{1}{2} \varepsilon_{\mu \nu \lambda \rho} F^{\lambda \rho}$ field tmsor charge
current Bianchit dual
Identity field
* Bianchi Identity \Leftrightarrow absence of magnetic monopoles

Duality of Forms

* Electromajuetic ducal'ty is geouetric
* In Differential Geonutry a vector field A_{μ} is a 1-form
* The field tensor $f_{\mu v}$ is a 2 . form
* The ducl freld $F_{\mu \nu}^{*}$ is also a 2 -form
* In d-dimessius a p-form (autisymuntre tuntor of rounk p) is dund to a $d-p$ forin
* In $d=4$ dimesions a 2 -form is dud to a 2 -torn
* In $d=2$ dinastins a 1-form is dud to a 1-form $\partial_{\mu} \phi=\varepsilon_{\mu \nu} \partial^{v} \psi \quad$ Cancly-Rismann!

Duality in Iris Models

* 2D: the Using Model is (1941) Self - dual (Kramis - Wannier)
* Low $T_{:} Z$ is an expansion in closed domain wall loops; weight $\sim e^{-2 / T} \times$ length
* MighT: Z is an expansion in closed loops

$$
\begin{aligned}
& \text { in closed loops } \\
& \text { weight } \sim \tanh (1 / T) \times \operatorname{length}
\end{aligned}
$$

* maps high T low T disorder \leftrightarrow order
* Self-ducl: $e^{-2 / T_{c}}=\tanh \left(1 / T_{c}\right)$

$$
\Rightarrow \quad \frac{1}{T_{c}}=\frac{1}{2} \ln (\sqrt{2}+1) \quad(\text { Onsager, } 1944)
$$

\uparrow	\imath	\imath	T	\uparrow
\uparrow	\downarrow	\downarrow	\downarrow	\uparrow
\uparrow	\downarrow	\downarrow	\downarrow	\uparrow
\uparrow	\downarrow	\downarrow	\imath	\uparrow
\uparrow	$\hat{\imath}$	τ	\uparrow	\uparrow

domain walls (low T)

$$
\begin{aligned}
& Z=\sum_{[\sigma]} e^{\frac{1}{T}} \sum_{\left\langle x, x^{\prime}\right\rangle} \sigma(x) \sigma\left(x^{\prime}\right) \\
& Z_{D W}\left[e^{-\frac{2}{T}}\right]=Z_{\text {loops }}\left[\tanh \frac{1}{T}\right]
\end{aligned}
$$

high T
expansion diagrams

* The high T_{c} loops live on the direct lattice

Th low- Te loops (domain walls) love a the dual lattice

direct loops

direct lattice

dual loops (domain walls)
In $2 d\left\{\begin{array}{l}\text { links are dual to links } \\ \text { sites are dual to plaguettes }\end{array}\right.$
This is the same as the duality of forms
High $T: Z=\sum_{\{\text {loops }\}}\left(\begin{array}{c}\left.\left(\tanh \frac{1}{T}\right)^{L(\text { loops }} \begin{array}{l}\text { H } \\ H\end{array}\right)^{L(D W)}\end{array}\right.$
Low T: $Z=\sum_{\text {olomains }}^{\{\operatorname{loops}\}}\left(e^{-\frac{2}{T}}\right)^{L(D w)} \not \#$

Field Theory Interpretation

* We can regard th P.F. Z as a sum over histories of spic configurations from one row to the next row
* Path integral in a discretized imaginary time
* High T expaunin loops \Leftrightarrow processes in which pain of particles are created and destroyed
* Low T expansion loops \Leftrightarrow processes in which $\frac{\text { pairs }}{\text { walls }}$ of domain
 and destroyed
* Analog of the (imaginary) time evolution operator is the trousfar matrix
* The classical d-dimensional Irig Model is equivalet to a quantum Isig Model in d-1 dimensions

The Quantur Ising Model (EF \& L. Susskrid)

$$
d=1 \quad H=-\sum_{\dot{j}} \sigma_{1}(j)-\lambda \sum_{\dot{j}} \sigma_{3}(j) \sigma_{3}(j+1) \quad \text { PBC's }
$$

(a) λ suad \Leftrightarrow T mijh disorder
(b) λ learge $\Leftrightarrow T$ low overu

Globd \mathbb{Z}_{2} symuetry: $Q=\prod_{j} \sigma_{1}(j) ;[Q, H]=0$ flipriyg all spins

$$
\begin{aligned}
& \text { j̄1 ј } \quad \tilde{\jmath}+1 \\
& \text { ducl trittice: midporits } \\
& \tau_{1}(\tilde{j})=\sigma_{3}(j) \sigma_{3}(j+1) ; \quad \tau_{3}(\tilde{j})=\prod_{n \leq j} \sigma_{1}(n) \\
& \text { domain } \\
& \text { walls } \\
& \tau_{3}(\tilde{\jmath}-1) \tau_{3}(\vec{\gamma})=\sigma_{1}(\dot{j}) ; \quad \tau_{1}^{2}=\tau_{3}^{2}=1,\left\{\tau_{1}, \tau_{3}\right\}=0 \\
& H=-\sum_{\tilde{j}} \tau_{3}(\tilde{\jmath}) \tau_{3}(\tilde{\jmath}+1)-\lambda \sum_{\tilde{\jmath}} \tau_{1}(\tilde{\jmath}) \\
& \text { (Onsater) }
\end{aligned}
$$

Duality:
duaboty $\lambda \longleftrightarrow \frac{1}{\lambda} \Longrightarrow$ self dreatity $\lambda=1$

Dual of the $D=3$ Classical Inning Mode

* The high Texpantion is a sun over loop configurations
* The low T expansion is a sue over domain wall configs.
* In $D=3$ the domain walls are closed surfaces
\checkmark domain wall

A domain wall config. can be pictured us the time evolution of a closed string in the anal lattice
\Rightarrow the deal model at low \tilde{T} is a sur over loops and at high \tilde{T} is a sur over closed surfaces

The $D=3$ Irving Gauge Theory (Weaner 1971)
$\left\{\begin{array}{l}\mathbb{Z}_{2} \text { ganef fields on th links } \\ \text { Interactions on plaguettos }\end{array}\left\{\sigma_{\mu}\right\}\right.$

plaquette of a cube

Gauge invariance: flip all \mathbb{Z}_{2} sane fields that slave a site

High $T \Rightarrow$ sunn oven closed surfaces with a weight $\left(\tanh \frac{1}{T}\right)^{\text {surface }}$

Low $T \Rightarrow$ sum over closed loops of the dual lat Hic
This is the dual of the $D=3$ Trig model
In $D=3$ links are dance to plageettes (1 form $\Leftrightarrow 2$ form)

Observables

3D Ing Model
Correlator $\left\langle\sigma(x) \sigma\left(x^{\prime}\right)\right\rangle$

$$
\text { *highT } \sim e^{-\left|x-x^{\prime}\right| /} \xi
$$ disorder

* low T $\sim|\langle\sigma\rangle|^{2}+e^{-\left|x-x^{\prime}\right|} / \xi$

Long range onder

Wiles Loop: Creates an o pen domain wall (defect)
Area law in the ordered phase Perimeter law in the disordered phase
$3 D \mathbb{Z}_{2}$ gouge theory
wilson hoop $\left\langle\prod_{\gamma} \sigma\right\rangle ; \partial \Sigma=\gamma$ γ : closed loop

$$
\left.* \operatorname{high} T^{*} \sim \exp -\operatorname{Area}(\Sigma)\right)
$$

confinement
$*$ low $T^{*} \sim \exp (-$ length $(\gamma))$ decon finement
$\xrightarrow{\text { Correlator: crectes an open }}$
\mathbb{Z}_{2} fin x tubs endif ut two "monopoles'
confinement \Leftrightarrow monopole cnidusatin
(EF \& L. Susshind, '7 8) Quantim Vertion (2+1 dimensions)

Isif Morlel

$$
H=-\sum_{\vec{r}} \sigma_{1}(\vec{r})-\lambda \sum_{\left\langle\vec{r}_{1} \vec{r}^{\prime}\right\rangle} \sigma_{3}(\vec{r}) \sigma_{3}\left(\vec{r}^{\prime}\right)
$$

Globel $\mathbb{R}_{\text {, symmetry }}$

$$
Q=\prod_{\text {sites }} \sigma_{1} \text { (stes) }
$$

\mathbb{Z}_{2} gange Theory

$$
H=-\sum \sigma_{1}(\text { link })-g \sum \sigma_{3} \sigma_{3} \sigma_{3} \sigma_{2}
$$

lints plaguties
Local (quese) \mathbb{Z}_{2} symintory

$$
\begin{aligned}
& Q(\vec{x})= \prod \begin{array}{l}
\text { lincs } \\
\\
\\
\text { tht } \\
\text { thane } \\
\text { shan } \\
\\
\\
\\
\left(\text { 'star }{ }^{\prime \prime}\right)
\end{array} \\
& {\left[Q\left(\vec{x}^{\infty}\right), Q\left(\vec{x}^{\prime}\right)\right]=0 }
\end{aligned}
$$

$$
[Q(\vec{x}), H]=0
$$

Gange Invariant slates

$$
\begin{aligned}
& \text { Gange Invariant Gauss } \\
& Q(\dot{x}) \mid P h y s)=\mid P h y s) \text { Law }
\end{aligned}
$$

Quantive veosion of Duclity

$\pi \sigma_{3}=\tau_{1}$ (ducl inte) plaguette

$$
\sigma_{1}(\text { link })=\tau_{3} \tau_{3} \text { dnal } \operatorname{lin} k
$$

$$
\pi \sigma_{1}=1
$$

link
\Rightarrow The gauge invariact sector $(Q(\vec{x})=1)$ of the star
\mathbb{Z} sange theory with conptig g maps onto the $2+1$ dim. Isrg tholel with coupliy $\lambda=\frac{1}{g}$

$$
H=-\sum_{\text {likks }} \sigma_{1}-g \sum_{\text {plaquatts }} \sigma_{3} \sigma_{3} \sigma_{3} \sigma_{3} \underset{\text { duality }}{\longrightarrow} H=-\sum \tau_{3} \tau_{3}-\lambda \sum \tau_{1}
$$

sites arr dual to plaquettes, links are ducl to links

Physical Picture
Confined phase $\left(g<g_{c}\right)$ (use $\sigma_{\text {, rigugteites) }}$

$$
\left.{ }_{k} \mid \text { Gad }\right\rangle=\sum_{\text {loops }}|\square\rangle \quad \mathbb{Z}_{2} \gg \text { electric loops are }
$$ by the plaquette over stor

* At g_{c} thu loops proliferate
* For $g \gg g_{c}$ we approximate $H=-\sum_{\text {plaquett-s }} \sigma_{3} \sigma_{3} \sigma_{3} \sigma_{3}$

$$
Q(x)=1 \quad \text { ("Toric Coddle") }
$$

$*$ On a torus it has a 4-folde degeneracy (Topolosicl Phase)

* The dual is $H_{I_{n i f}}=-\sum_{\text {situs }} \tau_{1} \Rightarrow \begin{gathered}\text { disordered phase } \\ \text { (Migitaev, } 1997 \text {) }) ~\end{gathered}$

Vortices and Mmopoles
We coill discuss modil with a (compact) $U(1)$ symmety Complex siclar $\phi(x)=|\phi(x)| e^{i \theta(x)}$ (θ difinad mod 2π) Order parewtes of an $X Y$ ckssich spris superfhiol or an inconimeusiate CDW
alobal symutry $\phi(x) \rightarrow \phi(x) e^{i \alpha} \Leftrightarrow \theta(x) \rightarrow \theta(x)+\alpha$
Ordired phate (T low) $|\phi(x)| \approx \phi_{0}$

$$
\begin{aligned}
& \text { d phate }(T \text { low }) \quad|\phi(x)| \approx \Psi_{0} \cong \theta+2 \pi \\
& Z \approx \int \theta(x) \exp \left(-\int d^{2} x \frac{1}{2 g}(\vec{\nabla} \theta)^{2}\right) \quad\left(J\left|\phi_{0}\right|^{2} \quad, \quad J=J\left|\phi_{0}\right|^{2}=\right.\text { stiff nes } \\
& g=T \mid
\end{aligned}
$$

Vertices

C: closed oriented path
Total change of phase: $(\Delta \theta)_{c}$ on the closed path $c: \frac{}{2 \pi}$

$$
\frac{(\Delta \theta)}{2 \pi} c=\frac{1}{2 \pi} \oint_{c} d \vec{x} \cdot \vec{\nabla} \theta(x)=i \int_{0}^{\frac{d \varphi}{2 \pi}} e^{i \theta(\varphi)} \partial_{\varphi} e^{-i \theta(\varphi)} \equiv m
$$

m : topological invariant under suroth deformations of C $\theta(x)$ is a map of $C \rightarrow$ phase field $e^{i \theta}$
m : Windong number

Sapperfluid currunt $\partial_{\mu}=\partial_{\mu} \theta$
Vorticity $\omega(x)=\varepsilon_{\mu \nu} \partial_{\mu} j_{\nu}=\varepsilon_{\mu \nu} \partial_{\mu} \partial_{\nu} \theta(x)$
Levi - Civita
$\Rightarrow \theta(x)$ has a branch ent singularity accross which it juips by $2 \pi m$

* Set of vortices at locations $\} \vec{x}_{j^{j}}$) with topologich charges $5 m_{j} 3$

$$
\begin{aligned}
\Rightarrow \omega(\vec{x}) & =2 \pi \sum_{j} m_{j} \delta^{2}\left(\vec{x}-\hat{x}_{j}\right) \\
& \equiv 2 \pi \sum_{j} m_{j} \operatorname{Im} \ln \left(z-z_{j}\right) \quad z=x_{1}+i x_{2}
\end{aligned}
$$

Detrue ϑ, the Caucky-Rismann dual $\partial_{\mu} \vartheta=\varepsilon_{\mu \nu} \partial_{\nu} \theta$

$$
\Rightarrow-\nabla^{2} \theta=\omega(x)
$$

$$
\begin{aligned}
& \Rightarrow \begin{array}{l}
\because(\vec{x})=\int d^{2} y G(|\vec{x}-\vec{y}|) \omega(\vec{y}) \\
-\nabla^{2} G(\vec{x}-\vec{y})=\delta^{2}(\vec{x}-\vec{y}) \quad \text { Green function } \\
G(|\vec{x}-\vec{y}|)=\frac{1}{2 \pi} \ln \left(\frac{a}{|\vec{x}-\vec{y}|}\right) \quad \begin{array}{l}
\text { uv whtoff } \\
\text { s.t. } \\
G(|x-y|)=0 \\
\text { If }|\vec{x}-\vec{y}|<a
\end{array}
\end{array} \begin{array}{ll}
\text { Energy of theconfy: }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
E[\theta]=\frac{J \phi_{0}^{2}}{2} \int d^{2} x(\vec{\nabla} \theta)^{2} & =\frac{J \phi_{0}^{2}}{2} \int d d^{2} x \int d^{2} y \omega(x) G(x-y) \omega(y) \\
& =2 \pi J \phi_{0}^{2} \sum_{j<k} m_{j} m_{k} \ln \left(\frac{a}{\left|x_{j}-x_{k}\right|}\right)
\end{aligned}
$$

which is IR divergent mbess $\sum_{j} m_{j}=0$ (zerototal $\left.\begin{array}{c}\text { vortinity }\end{array}\right)$

$$
Z_{x y} \approx Z_{\substack{\text { colns } \\ a_{0} s}}=\sum_{\left\{m_{j} j\right.}^{\prime} \exp \left(-\frac{2 \pi\left|\phi_{j}\right|^{2}}{T} \sum_{j<k} m_{j} \cdot m_{k} \ln \left(\frac{a}{\left|x_{j}-x_{k}\right|}\right)\right)
$$

Kosterlitz - Thouless Transition
At low T the vortices are band "n neutral pairs The free emery of a vortex is

$$
\begin{aligned}
& F_{\text {vortex }}=E_{\text {vortex }}-T S_{\text {vortex }} \\
& E_{\text {vortex }}=\pi J\left|\phi_{0}\right|^{2} \ln \left(\frac{L}{a}\right) \leftarrow \text { Energy } \begin{array}{c}
\text { (L: linear sine of }) \\
\text { the systeen }
\end{array} \\
& S_{\text {vortex }}=\ln \left(\frac{L}{a}\right)^{2} \leftarrow \varepsilon_{\text {ntropy }} \\
& F_{\text {vortex }}\left(T_{k T}\right)=0 \leftrightarrow T_{k T}=\frac{\pi}{2} J \phi_{0}^{2}
\end{aligned}
$$

$T<T_{k T}$ vontices are seuppresscal
$T>T_{k T}$ vortias proliferate

Alternative Pieture
Let A_{r} be a background $U(1)$ gauge field

$$
Z[A]=\int D \theta e^{-\frac{1}{2 y} \int d^{2} x\left(\partial_{\mu} \theta-A_{\mu}\right)^{2}}
$$

Let A_{μ} represent a vortex field $\varepsilon_{\mu \nu} \partial_{\mu} A_{\nu}=\omega(x)$

$$
\begin{aligned}
& \text { Hubbard- Stratonovich: } g=\int d^{2} x a_{\mu}^{2}+i \int d^{2} x a_{\mu}\left(\partial_{\mu} \theta-A_{\mu}\right) \\
& Z[A]=\int D \theta D a_{\mu}=e_{\mu \nu} \partial_{\nu} \theta \\
& Z[A]=H \int D \vartheta e^{-\frac{g}{2} \int d^{2} x\left(\partial_{\mu} \vartheta\right)^{2}+i \int d^{2} x \vartheta \omega} \text { with } \int d^{2} x \omega=0
\end{aligned}
$$

Duality: $\theta \longleftrightarrow \vartheta$ and $g \longleftrightarrow \frac{1}{g}$

Sumining oren vortices with core energy um^{2}

$$
\begin{aligned}
& Z=\sum_{\left\{m_{j}\right\}}^{1} \int D \vartheta \exp \left[-\frac{g}{2} \int d^{2} x\left(\partial_{\mu} \vartheta\right)^{2}+i \sum_{j} 2 \pi m ; \vartheta\left(x_{j}\right)-\frac{u}{T} \sum_{j} m_{j}^{2}\right. \\
& z=e^{-u / T} \ll 1 \Rightarrow \operatorname{lon} m_{j}=0, \pm 1 \operatorname{contribete} \\
& \Rightarrow Z=\int D \vartheta \exp \left[-\int d^{2} x\left[\frac{g}{2}\left(\partial_{\mu} \vartheta\right)^{2}-v \cos (2 \pi \vartheta)\right] \text { Sine }-\operatorname{G} \theta r\right. \\
& v=2 z / a^{2}
\end{aligned}
$$

vortex correlator: $\left\langle e^{2 \pi i \vartheta(x)} e^{-2 \pi i \vartheta(y)}\right\rangle=\frac{\operatorname{cosit} .}{|x-y|^{2 \pi / g}}$
\Rightarrow scaling diuneusion $\Delta_{\text {vortex }}=\pi / g$
\Rightarrow vortices are relevant if $\Delta_{\text {vortex }}<d=2 \Rightarrow g_{c}=\frac{\pi}{2}$
$\Rightarrow K T$ transition
$*\left\langle e^{i \theta(x)} e^{-i \theta(y)}\right\rangle=\frac{\operatorname{const}}{|x-y|^{g / 2 \pi}} \Rightarrow \frac{g}{2 \pi}=\frac{T}{2 \pi J \phi_{0}^{2}} \leq \frac{1}{4}$ for all $T<T$ power law decay

Maguatric Mnsopoles in Compact $Q E D \quad d=3$
(Enclidian spacetime)
Divac momopole $B_{i}(x)=\frac{q}{2} \frac{x_{i}}{2}-2 \pi q_{i, 3} \delta_{i} \delta\left(x_{1}\right) \delta\left(x_{i}\right) \ominus\left(-x_{3}\right)$
Lattice model (Polyakov, 1977)

$$
Z=\prod_{\text {links } 0} \int_{\frac{2 \pi}{2 \pi}}^{2 \pi} \frac{d A_{\mu}}{2 \pi} \exp \left(\frac{1}{4 e^{2}} \sum_{\text {plaguettes }} \cos F_{\mu \nu}\right)
$$

$F_{\mu \nu}$: flux through a plaguette

$$
F_{\mu \nu}=\Delta_{\mu} A_{\nu}-\Delta_{\nu} A_{\mu}
$$

Gange invariance: $\quad A_{\mu} \rightarrow A_{\mu}+\Delta_{\mu} \Phi(x)$
Periodicity: $A_{\mu} \rightarrow A_{\mu}+2 \pi l_{\mu}, l_{\mu} \varepsilon \mathbb{Z}$

$$
\Phi=2 \pi q
$$

$$
\prod_{\substack{1 \\ \text { cube } \\ \text { faces }}} e^{\kappa F_{\mu} \nu}=1 \quad \text { (Bianchi Identity) }
$$

\Rightarrow allows for momopoles w ith of $\in \mathbb{Z}$

We will follow The same cepproach we used with vortices
$\Rightarrow B_{\mu \nu}$ is a background 2 -form field ($B_{\mu \nu}=-B_{\nu \mu}$)
(Kalb-Ramoud)

$$
\begin{aligned}
& Z\left[B_{\mu}\right]=\int D A_{\mu} \exp \left(-\frac{1}{4 e^{2}} \int d^{2} x\left(F_{\mu \nu}-B_{\mu \nu}\right)^{2}\right) \\
& F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu} ; \quad A_{\mu} \rightarrow A_{\mu}+\partial_{\mu} \Phi^{\infty} ; B_{\mu \nu} \rightarrow B_{\mu \nu}
\end{aligned}
$$

ω_{μ} also have $A_{\mu} \rightarrow A_{\mu}+a_{\mu}>B_{\mu \nu} \rightarrow B_{\mu \nu}+\partial_{\mu} a_{\nu}-\partial_{\nu} a_{\mu}$ (2-form gauge transf.)
Mono pola density; $M(x)=2 \pi \sum_{j} m_{j} \delta^{3}\left(x-x_{j}\right)$

$$
\begin{gathered}
M(x)=\frac{1}{2} \varepsilon_{\mu \nu} \lambda \partial_{\mu} B_{\nu \lambda} \\
Z[B]=\int \Phi A_{\mu} D b_{\mu \nu} \exp \left(-\frac{e^{2}}{2} \int d^{3} x b_{\mu \nu}^{2}+i \int d^{3} x \frac{1}{2}^{2} b_{\mu \nu}\left(F_{\mu \nu}-B_{\mu \nu}\right)\right) \\
\Rightarrow \partial_{\nu} b_{\mu \nu}=0 \Rightarrow b_{\mu \nu}=\varepsilon_{\mu \nu \lambda} \partial_{\lambda} \vartheta \quad \text { (compact scalav) }
\end{gathered}
$$

invariant moles $v \rightarrow \vartheta+\alpha(\alpha ; \cos t \bmod 2 \pi)$

$$
\begin{aligned}
& \Rightarrow Z[B]=\int D \vartheta \exp \left(-\frac{e^{2}}{2} \int d^{3} x\left(\partial_{\mu} \vartheta\right)^{2}+2 \pi i \sum_{j} m_{j} \vartheta(j)\right) \\
& \Rightarrow Z=\sum_{\left.i m_{j}\right\}} Z\left[m_{j}\right] \equiv \int D \vartheta \exp \left(-\int d^{3} x\left(\frac{e^{2}}{2}\left(\partial_{\mu} \vartheta\right)^{2}-v \cos 2 \pi \vartheta\right)\right) \\
& v=2 \exp (-u) / a^{3} \quad(u: \text { core enerss }) \quad \text { sine }- \text { Gorln ! } \\
& \Rightarrow \quad \text { but } d=3
\end{aligned}
$$

Monopole correlator

$$
\left.<e^{i 2 \pi \theta(x)} e^{-i 2 \pi \theta(y)}\right\rangle=\exp \left(\frac{\pi}{2 e^{2}}\left[\frac{1}{R}-\frac{1}{a}\right]\right) \quad R=|x-y|
$$

\rightarrow const
\Rightarrow Mompoles prolifenate fir all $e^{2} \neq 0$
\Rightarrow In $d=3$ the energy $<\infty$ but the entoory $\sim \ln \left(\frac{L}{a}\right)^{3} \rightarrow \infty$ \Rightarrow Confinemet by moropole condeesation
Wilsm loop: $W_{\gamma}=\left\langle e^{i} \oint_{\gamma} d x_{\mu} A_{\mu}\right\rangle$ has an area law \Rightarrow confinement (Polyakor, 1977)

Higgs, Confinent and Topology $\quad(d=3)$
Consider a theory of complex order parameter of charge $n \in \mathbb{Z}$ coupled to a dynamical U(1) (compact) gauge field Order Parameter fielal $e^{i \Theta(x)}$, Ap gouge field $n=2$ is (with some caveats) the case of a supercmodector Lattice model: $\theta(x)$ on sites and A_{μ} un hicks

$$
\begin{aligned}
& Z=\prod_{\text {sites }}^{2 \pi} \frac{d \theta}{2 \pi} \Pi \int_{\operatorname{lincs}}^{2 \pi} \frac{d A_{\mu}}{2 \pi} \exp \left(S\left(\theta, A_{\mu}\right)\right) \\
& g \rightarrow 0 \Rightarrow F_{\mu \nu} \rightarrow 0(\bmod 2 \pi) \Rightarrow 3 D \text { XY model } \Rightarrow \text { "High' "fin } \beta \text { large }
\end{aligned}
$$

$\beta \rightarrow 0 \Rightarrow$ Polyakov's $Q \in D \Rightarrow$ cmfinewent

Q1: How are the Highs and confinent limits related?
Q2: Are they different phases
Answer: it depends on (n) (EF \& S. Shenker 1979)
$n=1 \quad \triangleleft^{\theta=0 \bmod 2 \pi} \quad \quad \theta=\frac{2 \pi}{n} p \Leftrightarrow \mathbb{Z}_{n}$ spin model
 analytic
No phase
Highs and Confinement transition are the same phase

Consider the deconfind phat $n>1$

$$
Z=\int D \theta D A_{\mu} \operatorname{exsp}\left(-\int d^{3} \times\left[\frac{\beta}{2}\left(\partial_{\mu} \theta-n A_{\mu}\right)^{2}-\frac{1}{4} g^{2} F_{\mu \nu}^{2}\right]\right)
$$

for $\quad \beta \gg 1$
Hubbard - Stratonovich

$$
\begin{aligned}
& \text { Hubbard - strationovich } \\
& Z=\int D \theta D A_{\mu} D a_{\mu} e^{-\int d^{3} x} \frac{1}{2 \beta} a_{\mu}^{2}+i \int a_{\mu}\left(\partial_{\mu} \theta-n A_{\mu}\right)-\int \frac{1}{4 s^{2}} F_{\mu \nu}^{2}
\end{aligned}
$$

Integrate θ out $\Rightarrow \partial_{\mu} a_{\mu}=0 \Rightarrow a_{\mu}=\varepsilon_{\mu \nu \lambda} \partial_{\nu} b_{\lambda}$

$$
\begin{aligned}
& \text { Integrate, } \theta \text { out } \Rightarrow \partial_{\mu} a_{\mu}=0 \Rightarrow D b_{\mu} D A_{\mu} \exp \left(i n \int d^{3} \times A_{\mu} \varepsilon_{\mu \nu \lambda} \partial_{\nu} b_{\lambda}-\int d^{3} x \frac{1}{4 \beta} f_{\mu \nu}^{2}-\int d^{3} \times \frac{1}{4 g^{2}} F_{\mu \nu}^{2}\right) \\
& \left.Z=\int D{ }_{\mu}\right)
\end{aligned}
$$

$\beta \rightarrow \infty$ and $g \rightarrow 0$ aby the "BF" term survives
This is a topological term \Rightarrow The deconfined phase is For $n=2 \Rightarrow$ Toric Code

There is never a Hiss phase

Fermions in one-dineusion

$$
\begin{aligned}
& E(P) \approx v_{f}\left(P-p_{f}\right)-v_{f}\left(p+p_{f}\right)+\cdots \\
& \Psi(x) \simeq \psi_{R}(x) e^{i p_{f} x}+\psi_{L}(x) e^{-1 p_{f} x}
\end{aligned}
$$

$$
\operatorname{den} \operatorname{sitg} \rho(x)=\underline{\Psi}^{+}(x) \Psi(x) \psi^{+} e^{i 2 p_{F} x}+\psi_{L}^{+} \psi_{R} e^{-i 2 p_{F} x}
$$

slowly varying dusity: $j_{0} \equiv \psi_{R}^{+} \psi_{R}+\psi_{L}^{+} \psi_{L} \equiv \rho_{R}+\rho_{L}$ slowly varying current: $\dot{j}_{1} \equiv \psi_{R}^{+} \psi_{R}-\psi_{L}^{+} \psi_{L}^{L} \equiv S_{R}-S_{L}$
$\psi_{R}^{+}(x) \psi_{L}(x) \equiv$ Order parameter of a CDW with $Q=2 p_{F}$; complex field
If $\left\langle\psi_{R}^{+} \psi_{L}+\psi_{L}^{+} \psi_{R}\right\rangle \neq 0 \Rightarrow$ energy gap at $P= \pm P_{F}$ The dusn'ly, current and the CDW O.P. are invariant under the Global U(1) gauge tronsformatin $\Psi(x) \rightarrow \underline{\Psi}^{\prime}(x)=e^{i \theta} \Psi(x)$

$q=p-P_{F}$ etc. $\quad \psi=\binom{\psi_{R}}{\psi_{L}}$ Dirac spinor

$$
\mathscr{L}=-v_{F}\left(\psi_{R}^{+} i \partial_{x} \psi_{R}-v_{F} \psi_{L}^{+} i \partial_{x} \psi_{L}\right)
$$

2×2 Dirac γ-matrices

$$
\begin{aligned}
& \text { filled Dirac sen } \\
& \gamma_{0}=\sigma_{1}, \gamma_{1}=-i \sigma_{2}, \gamma_{5}=\sigma_{3},\left\{\gamma_{\mu}, \gamma_{\nu}\right\}=2 g_{\mu \nu} ; g_{\mu \nu}=\left(\begin{array}{cc}
1 & 0 \\
0-1
\end{array}\right), ~
\end{aligned}
$$

Dirac Lagrangian dun'ty $\alpha^{\chi}=\bar{\psi} i \gamma_{\mu} \partial^{\mu} \psi ; \bar{\psi}=\psi^{+\gamma_{0}}$
It has two continuous symmetries
$* \psi(x) \rightarrow \psi^{\prime}(x)=e^{i \theta} \psi(x) \Rightarrow \psi_{R}^{\prime}=e^{i \theta} \psi_{R}, \psi_{L}^{\prime}=e^{i \theta \psi_{L}}$ (gauge)
$* \quad \psi(x) \rightarrow \psi^{\prime}(x)=e^{i \gamma_{5} \theta} \psi(x) \Rightarrow \psi_{R}^{\prime}=e^{+i \theta_{R}} \psi_{R}, \psi_{L}^{\prime}=e^{-i \theta_{L}}$ (chiral)
Q: How cone we have two symmetries?

Chiral Anomaly

* The massless Dirac theory has two glokel symmetries whereas the microsconic no del hat only one: gauge invariance,
* In the masses Dirac thing Ψ_{R} and Ψ_{L} are separately conserved
* Two currents: the genge current $\partial_{\mu}=\Psi \gamma_{\mu} \psi, \partial_{\mu} j^{\mu}=0$ anal the chiral current $j_{\mu}^{5}=\bar{\psi} \gamma_{\mu} \gamma_{S} \psi ; \partial \mu \delta_{\mu}^{5}=0$

$$
j_{\mu}=\left(\rho_{R}+\rho_{L}, \rho_{R}-\rho_{L}\right), \quad \partial_{\mu}^{5}=\left(\rho_{L}-\rho_{R}, \rho_{R}+\rho_{L}\right)
$$

* If we couple the theory to an uniform electric field E
$\Rightarrow \frac{d N_{R}}{d t}=\frac{e}{2 \pi} E$ and $\frac{d N_{L}}{d t}=-\frac{e}{2 \pi} E \Rightarrow \frac{d Q}{d t}=0 \Rightarrow$ electric charge is couriered
But $\frac{d Q_{5}}{d t}=\frac{e}{\pi} E \Rightarrow$ chiral change is not conserved
This is the chiral anomaly (following H. Niel sees and Y. Ninomiya 1982)

Chiral Anomaly and Bo drization
The noimal-orderad gauge charge density j_{0} and merest j_{1}, satisfy the equal -time comuntetor

$$
\begin{aligned}
& {\left[j_{0}\left(x_{1}\right), j_{1}\left(x_{1}^{\prime}\right)\right]=-\frac{i}{\pi} \partial_{2} \delta\left(x_{1}-x_{1}^{\prime}\right)} \\
& {\left[\gamma_{0}\left(x_{1}\right), \gamma_{0}\left(x_{1}^{\prime}\right)\right]=\left[\gamma_{1}\left(x_{1}\right), \partial_{1}\left(x_{1}^{\prime}\right)\right]=0}
\end{aligned}
$$

Mathis \& Loeb, 1965
Luther \& Emery, 1974
S. Coleman, 1975
E. Witten, 1978

Let ϕ be a real scalar field and II the conjugate nornetuen

$$
\Rightarrow \quad\left[\phi(x), \Pi\left(x^{\prime}\right)\right]=i \delta\left(x-x^{\prime}\right)
$$

\Rightarrow we identify $\partial_{0}(x) \equiv \frac{1}{\sqrt{\pi}} \partial_{1} \phi, \quad \partial_{1}(x) \equiv-\frac{1}{\sqrt{\pi}} \pi(x)=-\frac{1}{\sqrt{\pi}} \partial_{0} \phi$

$$
\Rightarrow j_{\mu}(x)=\frac{1}{\sqrt{\pi}} \varepsilon_{\mu \nu} \partial^{\nu} \phi \quad \text { (duality!) } \Leftrightarrow \partial \mu j_{\mu}=0
$$

But $j_{\mu}^{5}=\sum_{\mu v} j^{\nu} \Rightarrow \partial^{\mu} j_{\mu}^{5}=-\frac{1}{\sqrt{\pi}} \partial^{2} \phi \Rightarrow \partial^{\mu} j_{\mu}^{\delta}=0 \Leftrightarrow \phi$ is a free,

$$
\mathscr{L}=\bar{\psi} i \gamma^{\mu} \partial_{\mu} \psi \quad \longleftrightarrow \mathcal{L}^{v_{\pi}}=\frac{1}{2}\left(\partial_{\mu} \phi\right)^{2}
$$

Coupling to a gange fiet d

$$
\mathcal{L}=\bar{\psi} i \gamma^{\mu} \partial_{\mu} \psi-e A^{\mu} \bar{\psi} \gamma_{\mu} \psi
$$

In the bosnic theory

$$
\begin{aligned}
& \mathcal{L}=\frac{1}{2}\left(\partial_{\mu} \phi\right)^{2}-\frac{e}{\sqrt{\pi}} A^{\mu} \varepsilon_{\mu \nu} \partial^{\nu} \phi \\
& \Rightarrow \varepsilon_{q} \cdot o_{m} m_{0} t i a r-\partial^{2} \phi=\frac{e}{\sqrt{\pi}} \varepsilon_{\mu \nu} \partial^{\nu} A^{\mu} \equiv \frac{e}{\sqrt{\pi}} F^{*} \text { (dual "teudor") }
\end{aligned}
$$

$$
\Rightarrow \partial^{\mu} j_{\mu}^{s}=-\frac{1}{\sqrt{\pi}} \partial^{n} \phi=\frac{e}{2 \pi} F^{*} \quad \text { chirul anomaly! }
$$

Total furmion \# $N_{F} \& \mathbb{Z}_{L}$

$$
N_{F}=\int_{0}^{L} d x_{1} j_{0}\left(x_{0}, x_{1}\right)=\frac{1}{\sqrt{\pi}} \int_{0}^{L} d x_{1} \partial_{1} \phi\left(x_{0}, x_{1}\right)=\frac{1}{\sqrt{\pi}}\left(\phi\left(x_{0}, L\right)-\phi\left(x_{0}, 0\right)\right)
$$

$\Rightarrow \phi\left(x_{1}+L\right)=\phi\left(x_{1}\right)+\sqrt{\pi} N_{F} \Rightarrow \phi$ is a compactified scalar

$$
\phi(x+L)=\phi(x)+2 \pi R N \Rightarrow R=1 / \sqrt{4 \pi} \text { compactification radius }
$$

Operator Mappings

* compactitication requires that the observable br invariant under $\phi \rightarrow \phi+2 \pi n \Omega$, with $n \in \mathbb{Z}_{n}$
$\Rightarrow V_{\alpha}(\phi)=\exp (i \alpha \phi)$ is allowed if $\alpha=\frac{n}{R}=n \sqrt{4 \pi}$

$$
\text { scaling dimension }=n^{2}
$$

$$
\begin{aligned}
& \text { if dimension }=n \\
& \phi=\phi_{R}+\phi_{L}, \vartheta=-\phi_{R}+\phi_{L}, \quad \partial\left(x_{0}, x_{1}\right)=\int_{-\infty}^{x_{1}} d x_{1}^{\prime} \pi\left(x_{0}, x_{1}^{\prime}\right) \\
& \Rightarrow \partial_{\mu} \phi=\varepsilon_{\mu \nu} \partial^{v} \theta \quad \text { (Canchy-Riemann) }
\end{aligned}
$$

Fermion Operators (Mandelstam, 1975)

$$
\begin{aligned}
& \text { Fermion Operators (Mandeestan, } \\
& \psi_{R}(x)=\frac{1}{\sqrt{2 \pi a}}: \exp \left(i \sqrt{4 \pi} \phi_{R}\right): \quad \psi_{L}(x)=\frac{1}{\sqrt{2 \pi a}}: \exp \left(-i \sqrt{4 \pi} \phi_{L}\right) \\
& \bar{\psi} \psi \equiv \psi_{R}^{+} \psi_{L}+\psi_{L}^{+} \psi_{R} \leftrightarrow \frac{1}{2 \pi a}: \cos (\sqrt{4 \pi} \phi): \quad \begin{array}{l}
\text { scaling }
\end{array}
\end{aligned}
$$

$$
\bar{\psi} \psi \equiv \psi_{R}^{+} \psi_{L}+\psi_{L}^{+} \psi_{R} \rightarrow \frac{1}{2 \pi a}: \cos (\sqrt{4 \pi} \phi):
$$

scaling dimension 1

$$
\mathcal{L}=\bar{\psi}_{i} \gamma^{\mu} \partial_{\mu} \psi-m \bar{\psi} \psi \longleftrightarrow \mathcal{L}=\frac{1}{2}\left(\partial_{\mu} \phi\right)^{2}-g \cos (\sqrt{4 \pi} \phi) \quad g=m /(2 \pi a)
$$

3D: Particle-vortex duality
(Peskin; Stone d Thom as; Dasgupta, Hal perin) (v 1978-1981)

* Global $U(1)$ symmetry
* 3D XY model (superflevid)
* Hish T: gas of closed lsops with short-ranue
interactions (i.e. particle worldlines)
* Low T: closed vortex loops w/ Biot-Savart interactions
d Particle - vortex duabity
simple derivation of 3D Particle-Vortex Duality
* We will follow the sane P roudure we used in 2D
* $\theta(x)$: phase field of a $3 D$ complex field
* $A_{\mu}(x)$: background gene field that will create

$$
Z\left[A_{\mu}\right]=\int D \theta \exp \left(-\frac{1}{2 g} \int d^{3} x\left(\partial_{\mu} \theta-A_{\mu}\right)^{2}\right)
$$

vorticity $\omega_{\mu}(x)=\varepsilon_{\mu \nu} \partial_{\nu} A_{\lambda} \equiv 2 \pi \sum_{k} l_{\mu}^{k}(x) \delta^{3}\left(x-x_{k}\right)$ vortex loops

$$
\partial_{\mu} \omega_{\mu}=0 \Longleftrightarrow \partial_{\mu} l_{\mu}^{k}=0
$$

$$
\begin{aligned}
& \text { Hubbard_ Stratenovich } \\
& Z[A]=\int D \theta D b_{\mu} \exp \left(-\int d^{3} \times \frac{g}{2} b_{\mu}^{2}+i \int d^{3} \times b_{\mu}\left(\partial_{\mu} \theta-A_{\mu}\right)\right) \\
& \equiv \int D b_{\mu} \delta\left(\partial_{\mu} b_{\mu}\right) \exp \left(-\int d^{3} x \frac{\partial}{2} b_{\mu}^{2}+i \int d^{3} x b_{\mu} A_{\mu}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \partial_{\mu} b_{\mu}=0 \Rightarrow b_{\mu}=\varepsilon_{\mu \nu \lambda} \partial_{\nu} a_{\lambda} ; f_{\mu \nu}=\partial_{\mu} a_{\nu}-\partial_{\nu} a_{\mu} \\
& \Rightarrow Z[A]=\int D a_{\mu} \operatorname{\mu xp}(-\int d^{3} \times \frac{g}{4} f_{\mu \nu}^{2}+i \int d^{3} x a_{\mu} \underbrace{\varepsilon_{\mu \nu} \partial_{\nu} A_{\lambda}}_{\omega_{\mu \nu}})
\end{aligned}
$$

Note: These stepr cutaic the stateneit ract in 3D the dual of a Goldstine firld (θ) is a gange frubl $\left(\mathrm{g}_{\mathrm{n}}\right)$ compactuficat in of $\theta \Leftrightarrow$ charge quantization Next we sun over vortex confgurations

$$
Z=\sum_{\left\{l_{\mu}^{k}\right\}} \delta\left(\partial_{\mu} l_{\mu}^{k}\right) \int D g_{\mu} \exp \left(-\int d^{3} x \frac{g}{4} f_{\mu \nu}^{2}+i \sum_{k} l_{\mu}^{k}\left(x_{k}\right) a_{\mu}\left(x_{k}\right)\right)
$$

upan addy o encrgy leangth to the Voatrus are a sloort range repultion (no crossin)

$$
\begin{aligned}
& \text { range repultion (no urossinf) } \\
& \Rightarrow Z=\int D a, D \phi D \phi^{*} \exp \left(-\int a^{3} x\left[\frac{g}{4} f_{\mu \nu}^{2}+\left|D_{a} \phi\right|^{2}+m^{2}|\phi|^{2}+\lambda|\phi|^{4}\right)\right.
\end{aligned}
$$

* The theory we derived is the 3D Abelia-Higss mode This is the same as a superc-dnctor ϕ couperal To a fluctuating e.m. Field $a_{\text {u }}$
x Introduce a probe find $B_{\mu} \Rightarrow A_{\mu} \rightarrow A_{\mu}+q_{\delta} B_{\mu}$
This hods i the decl theory to an extra tern

$$
\exp \left(-i \int d^{3} x \text { of } B_{\mu} \varepsilon_{\mu \nu \lambda} \partial_{\nu} a_{\lambda}\right) \quad(\% \varepsilon \mathbb{Z} \text { charge) }
$$

$$
\Rightarrow \text { current } j_{\mu} \longleftrightarrow q_{\mu \nu \lambda} \partial_{\nu} a_{\lambda}
$$

* For $m^{2}<0$ we can $r m$ the ducts backwards and mop the figs - superandeating phase to the mbroken phase of the $x y$ model

Field theory Picture of Particle-Vortex Duality

* Theory A

$$
\alpha^{*}=\frac{\text { Theory } A}{\left|D_{A} \phi\right|^{2}-m^{2}|\phi|^{2}-u|\phi|^{4}, D_{A} \equiv \partial-i A \text { Sieckeound }}
$$

external field

* Theory B

$$
\begin{aligned}
& \text { Theory } B \\
& \mathcal{L}=\left|D_{\alpha} \varphi\right|^{2}+m^{2}|\varphi|^{2}-u|\varphi|^{4}+\frac{1}{2 \pi} \varepsilon_{\mu \nu \lambda} A^{\mu} \partial^{\nu} a^{\lambda}-\frac{1}{4 e^{2}} f_{\mu \nu}^{2} \\
& \begin{array}{c}
\text { dynamical } \\
\text { field }
\end{array} j_{\mu} \leftrightarrow \frac{1}{2 \pi} \varepsilon_{\mu \nu \lambda} \partial^{\nu} a^{\lambda} \quad \text { (partcle-vortex) }
\end{aligned}
$$

Duality map the umbrolcen phase of (A) to the Hiss phase of (B) brocken phase of (A) to the unbroken phase of (B)

* Wilsm-Fisher Fired Points are mapped into each other

Geveralization: Web of Dualities
(1) Particle-Vortex duahty (Peskim, 1978; Dasgupta \& Aalperin, 1981) dynamical

$$
\begin{aligned}
& \text { (1) Particle-Vortex duahty (Pesteim, 1978; } \\
& \rightarrow\left|D_{A} \Phi\right|^{2}-m^{2}|\Phi|^{2}-u|\Phi|^{4} \leftrightarrow\left|D_{b} \varphi\right|^{2}+m^{2}|\varphi|^{2}-u|\varphi|^{4}+\frac{1}{2 \pi} A d b^{5}+M_{a} \times w e l l \\
& \text { external } j
\end{aligned}
$$ external 5

$$
J_{\mu} \longleftrightarrow \frac{1}{2 \pi} \varepsilon_{\mu \nu \lambda} \partial^{v} b^{\lambda} \text {; vortoces } \longleftrightarrow \text { particles }
$$

(2) Bosonization (Fradkin \& Schaposnik, 1994; Seiblog, Senthil, Wang \& Witten, 2016)

$$
\bar{\Psi}\left(i \varnothing_{A}-M\right) \psi-\frac{1}{8 \pi} A d A \leftrightarrow\left|D_{a} \phi\right|^{2}-m^{2}|\phi|^{2}-u|\phi|^{4}+\frac{1}{4 \pi} a d a+\frac{1}{2 \pi} a d A
$$

Dirac fermion \longleftrightarrow inonopole; $\bar{\psi} \gamma^{\mu} \psi \leftrightarrow \frac{1}{2 \pi} \varepsilon^{\mu \nu \lambda} \partial_{\nu} a_{\lambda}$
(3) Fermion Particle-Vortex du ality (Son, 2015; MeTlitski \& VishwanaTh, 2016) $\bar{\psi}\left[D_{A}-M\right) \psi-\frac{1}{8 \pi} A d A \Leftrightarrow \bar{x}\left(i D_{a}+M\right) x+\frac{1}{8 \pi} a d a-\frac{1}{2 \pi} a d b+\frac{2}{4 \pi} b d b-\frac{1}{2 \pi} b d A$

* In general dineuvim duality often maps theories with \neq character and symmetry
* In $X=4 \Rightarrow$ gauge the or $y \leftrightarrow$ gauge theory
* There are many other dualities
* AdS/CFT \leftrightarrow gauge/gravity duality
* S and T duality is String Theory
(S duality is related to partiole-vortex duality)
* Conjectured web of dualities in $2+1$ dinenstm
* Fermion \longleftrightarrow Bo\&N duality
* Can we "derive" these conjectures?

Strategy fer a derivation (Goldman \& \&F 2018)

* We will use generalized loop models near criticality but still in the gapped phases
* Generalizatim of the particue-vortex duality
* We cinsider loop models in $2+1$ dimensions
* Assn the the loops cannot intersect
* Include phase factors for linking numbers
* Frame the loops and include self-linkiy and Berry phase factors \Rightarrow fractional spin

Loop Models in $2+1$ Dimeuvions

$$
\begin{aligned}
& Z[A]=\sum^{1} \delta\left(\partial_{\mu} l_{\mu}\right) e^{-S[l]+i \pi \Phi[l]} \\
& \left\{l_{\mu}\right\} \\
& \text { background p } \\
& \text { weight per } \\
& \text { int length } \\
& + \text { interactions } \\
& \text { field lop configurations } \\
& \text { ("conserved currents") }
\end{aligned}
$$

$\Phi[l]=$ linking number + self -linking number + Berry plate of the frame

Linking $\#$ of two loops l_{1} and l_{2}

$$
\begin{aligned}
& \Phi=2 \times \text { linking } H \text { of } l_{1} \text { with } l_{2}+ \\
& +W\left[l_{1}\right]+W\left[l_{2}\right] \\
& W[l]=\delta L[l]-T[l]=\text { "writhe" } \\
& \text { self- } \operatorname{lin}^{\hat{l}}
\end{aligned}
$$

Twist $T[l]=\frac{1}{2 \pi} \int_{0}^{1} d s \int_{0}^{1} d u \underset{\substack{\text { tangent }}}{\hat{e} \cdot \partial_{s} \hat{e} \times \partial_{u} \hat{e}}$
Ill] in general is mot quantized and $\{$ Berry phase depuds in the metric of the frame

Linking \# of l_{1} and l_{2}

$$
\begin{aligned}
& \text { Example (~Polyakov 89') }
\end{aligned}
$$

$$
\begin{aligned}
& * \quad \mathcal{L}_{\text {bosm }}=\left|D_{a} \phi\right|^{2}-m^{2}|\phi|^{2}-u|\phi|^{4}+\frac{1}{4 \pi} a d a+\frac{1}{2 \pi} a d A \\
& z[A]=\int D \dot{j}_{\mu} D a_{\mu} \delta\left(\partial_{\mu} \dot{j}_{\mu}\right) e^{-|m| L[j]+i S}[\dot{j}, a, A] \\
& S[\delta, a, A]=\int d^{3} x\left[\gamma_{\mu}\left(a_{\mu}-A_{\mu}\right)+\frac{1}{4 \pi} a d a-\frac{1}{4 \pi} A d A+\cdots\right] \\
& \text { Integrating over } a_{\mu} \Rightarrow-\pi \Phi(j]+\int d^{3} \times\left(j_{\mu} A_{\mu}-\frac{1}{4 \pi} A d A\right)
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \mathcal{L}_{\text {fermion }}=\bar{\psi}\left(i \not \nabla_{A}-M\right) \psi-\frac{1}{8 \pi} A d A \text { with } M<0 \\
& \underset{\text { anomaly (} \eta \text { invariant) }}{\hat{1}} \\
& Z_{\text {fermion }}[A, M<0] e^{-\frac{i}{2} S_{C S}[A]}=\int D j \delta(\partial, j) e^{-|M| L[j]} \\
& e^{i S_{\text {vermin }}[\delta, A, M<0]} \\
& e^{-\frac{0}{i}} S_{c s}[A]
\end{aligned}
$$

$S_{\text {fermion }}[\delta, A, M<0]=\int d^{3} x\left[j \cdot A-\frac{1}{8 \pi} A d A\right]-\pi \Phi[j J$

* To get the bosmizatir identity for $M>0$ we uses bosmic particle - vortex duality
* In the fermionic theory $M<0 \leftrightarrow M>0 \Rightarrow \sigma_{x y}=0 \longleftrightarrow \frac{e^{2}}{h}$
* In the boric theory this is the tranti- fri broke to the unbroken phase

Fermion Particle - Vortex Duality
\times Duality from a free Dirac fermion $\longleftrightarrow Q G D_{3}$ with a quatijed CS term $\bar{\psi}\left(i \not X_{A}+M\right) \psi-\frac{1}{8 \pi} A d A \leftrightarrow \bar{X}\left(i \not \rho_{a}-M\right) x+\frac{1}{8 \pi} a d a$ $-\frac{1}{2 \pi} a d b+\frac{2}{4 \pi} b d b-\frac{1}{2 \pi} b d A$ \downarrow

$$
\left.-\frac{1}{2 \pi} b d A\right]
$$

Currents: $\bar{\psi} \gamma^{\mu} \psi \leftrightarrow \frac{1}{2 \pi} \varepsilon^{\mu \nu \lambda} o_{\gamma} a_{\lambda}$

$$
\begin{aligned}
& \text { loop modal } \\
& \rightarrow \int d^{3} x j_{\mu} A^{\mu}+\pi \Phi[j] \stackrel{\text { intesocile }^{c}}{ } \\
& \text { out } b_{m} \text { and } a_{r} \\
& -\pi \Phi[j]+\int d^{3} x\left[j \cdot a-\frac{1}{2 \pi} a d b+\frac{2}{4 \pi} b d b\right. \\
& Z_{\text {fromion }}[A, M]=Z_{Q E D_{3}}[A,-M] ; Z_{f}[A,-M]=Z_{Q E D_{3}}(A, M]
\end{aligned}
$$

Application: Fractional Quautuen Hall states
In the beginning... two-dimensional electron gases in large magnetic field,

$$
\sigma_{x y}=\nu \frac{e^{2}}{h}, \sigma_{x x} \rightarrow 0 \quad(T \rightarrow 0)
$$

no dissipation
Laughbin: $\Psi_{m}\left(z_{\left.1, \ldots, z_{N}\right)}\right.$) $\prod_{i<j}\left(z_{i}-z_{j}\right)^{m} \quad e^{-\frac{1}{4 l_{0}^{2}} \sum_{j=1}^{N}\left|z_{j}\right|^{2}} \quad(1983)$

$$
\begin{aligned}
& \text { filling } v=\frac{1}{m} ;\left\{z_{j}\right\} \text { : electron coordinates }(z=x+i y) \\
& \text { fraction }
\end{aligned}
$$

l_{0} : magnetic length
Join: composite fermion: elector $+(n-1)$ fluxes (m odd) FQH state: IQH state of composite fermions

$$
\rightarrow \underset{ \pm}{\nu_{ \pm}(p, s)=} \begin{aligned}
& \text { odd denominators }
\end{aligned} \underset{2 s p \pm 1}{p=1,2, \ldots} \begin{aligned}
& p, 1,2 \ldots
\end{aligned} \text { (Laughlin: } \begin{aligned}
& p=1,+ \text {) } \\
& m=2 s+1
\end{aligned}
$$

* The excitations of FQH fluids are vortices ("quaxihobs") that
(a) carry fractional charge $q=\frac{1}{2 s p \pm 1} \leftarrow$
(b) fractional braiding statistics (anyms) (Halperin'84, Aroucs, schrieffer and wilezek 18y)
(c) m dequerate ground states on a torus (topological protection)
 $\xrightarrow[\text { space }]{ } \quad V e^{i \varphi_{1}} e^{i \varphi_{2}} \rightarrow e^{i\left(\varphi_{1}+\varphi_{2}\right)} \quad$ ("fusion")

Duality at the FQH Platem Travition
(Hart Goldman \& \&F, 2019)

* Limiting value of the Jain sequeuces

$$
\lim _{p \rightarrow \infty} \frac{p}{2 n p \pm 1}=\frac{1}{2 n}
$$

* In this linit the average CS field concels A_{μ}
* Halpurin-Lee - Read: this in "Fermi Liguid"
* Good pheno maublogs but...
* Singaler forward scaTrering interactime and violation of partlcle-hole syminetry ot $\quad y=1 / 2 \quad(v \leftrightarrow 1-v)$

Symmetry of the $I-v$ curves at the transition

* The I-V curves show a "mirror" symunting at all transitions
* For general Jain states

$$
v=\frac{p}{2 n p+1} \leftrightarrow V^{\prime}=\frac{1+p}{2 n(1+p)-1}
$$

* For $v=1 / 2 \Longleftrightarrow P H$ symmetry

I

I-V curves at the $0 \Leftrightarrow \frac{1}{3}$ transtim ($\nu \cong \frac{1}{4}$)
Hall insulator $\leftrightarrow F$ PH

$$
V=\frac{1}{2}: \operatorname{son}^{\prime} \mathrm{s} \text { Congrcture }
$$

Geverl:
cale
care

$$
\begin{aligned}
& \underset{y}{\mathcal{L}_{1 / 2 n}}=i \underbrace{\bar{\psi}}_{a} \mathscr{D}_{a} \psi-\frac{1}{4 \pi}\left(\frac{1}{2}-\frac{1}{2 n}\right) a d a+\frac{1}{2 \pi} \frac{1}{2 n} a d A+\frac{1}{2 n} \frac{1}{4 \pi} A d A \\
& \partial \times A=B
\end{aligned}
$$

a : flux a ttachment
Electrm filling $v=\frac{2 \pi}{B}\left\langle\frac{\delta \mathcal{L}_{v=1 / 2 n}}{\delta A_{0}}\right\rangle=\frac{1}{2 n}\left(1+\frac{b_{*}}{B}\right)$

$$
b^{k} \Rightarrow \partial \wedge a=0 \Rightarrow \nu=\frac{1}{2 n}
$$

Comporite fermion ψ Fermi Surface set by a_{0}

$$
\rho_{\psi}=\frac{1}{2 \pi}\left(\frac{1}{2}-\frac{1}{2 n}\right) b_{x}-\frac{1}{2 \pi} \frac{B}{2 n}
$$

$$
\Rightarrow{ }_{\nu_{\psi}}=2 \pi \frac{\rho_{\psi}}{b_{x}}=\frac{1}{2}+\frac{v}{1-2 n \nu}
$$

filling
fractin
of \Rightarrow If $\nu_{\psi}=p+\frac{1}{2} \Rightarrow v=\frac{p}{2 n p+1}$
(Dirac)
$B_{u t}$, if $\nu_{\psi}^{\nu_{\psi}} \rightarrow-\nu_{\psi} \Rightarrow v=\frac{p}{2 n p+1} \rightarrow \frac{1+p}{2 n(1+p)-1}$
\Rightarrow PH transt. of the Dirac cenposito fermion is equivelet to Th reflection symnetry!

Self. Duality at th Traunition

* Use fercuion - boan duclity

$$
\mathcal{L}_{y_{2 n}} \leftrightarrow\left|D_{g-A} \phi\right|^{2}-|\phi|^{4}+\frac{1}{4 \pi} \frac{1}{2 n-1} g d g \leftarrow V_{\phi}
$$

* Followed by a (boson) particle - vortex duclity

$$
\mathcal{L}_{1 / 2 h} \longleftrightarrow\left|D_{h} \varphi\right|^{2}-|\varphi|^{4}-\frac{2 h-1}{4 \pi} h d h+\frac{1}{2 \pi} h d A
$$

$x \quad \nu=\frac{1}{2 n} \longleftrightarrow \quad v_{\phi}=-v_{\varphi}=1$

* Reflection gmantry $v_{\phi}(v)=-v_{\varphi}\left(v^{\prime}\right)$
* Reflection \Leftrightarrow bosm - vortex syunctio!
* Reflectir symmetry at $v=\frac{1}{2 n} \leftrightarrow$ bosn self-ludig!

Non-Abelian States: Moore-Read (1991)

$$
\Psi_{m R}\left(z_{i} 1\right) \sim \operatorname{Pf}\left(\frac{1}{z_{i}-z_{j}}\right) \prod_{i<i j}^{\left.\prod_{i j} z_{i}-z_{j}\right)^{n}} e^{-\frac{1}{4 l_{0}^{2}} \sum_{i=1}^{N}\left|z_{i}\right|^{2}}
$$

$$
x(z)=x^{\dagger}(z)
$$

Pfaffian: expectation value of chiral Majorana fermions $X(z)=X^{\dagger}(z)$ Propagator: $\langle X(z) X(w)\rangle=\frac{1}{z-w}$
$\left.P_{f}\left(\frac{1}{z_{i}-z_{j}}\right)=\left\langle x\left(z_{1}\right) \ldots x\left(z_{N}\right)\right\rangle{ }^{2}\right)$ "paired states" ($P_{x}+i p_{y}$ superconductor) $\varphi(z)$: chiral bosm $\varphi(z) \sim \varphi(z)+2 \pi \sqrt{n}$

$$
\begin{aligned}
& \varphi(z): \text { chiral bosm } \\
& \Psi_{M R} \sim\left\langle x\left(z_{1}\right) \ldots x\left(z_{N}\right)\right\rangle\left\langle\left(\prod_{i=1}^{N} e^{i \sqrt{n} \varphi(z)}\right) e^{-\int d^{2} z^{\prime} \sqrt{n} \rho_{0} \varphi\left(z^{\prime}\right)}\right\rangle
\end{aligned}
$$

Filling fraction: $v=\frac{1}{n}$
n even \rightarrow fermions; n odd \leftrightarrow bosons; egg. $v=\frac{1}{2}$ fermions

$$
v=1 \text { bosoms }
$$

Geveralization: Read-Rezayi statts (RR) (1998)
Based on \mathbb{Z}_{k} parafermions (and $\left.S \cup(2)_{k}\right)$

$$
\psi_{n}(z) * \psi_{m}\left(z^{\prime}\right) \sim \frac{1}{\left(z-z^{\prime}\right)^{\Delta_{n}}+\Delta_{m}-\Delta_{n+m}} \psi_{n, m}\left(z^{\prime}\right)+\cdots \quad \begin{aligned}
& \text { Fradkim \& Kadanoff } \\
& (1980)(!)
\end{aligned}
$$

$$
\Delta_{n}=\frac{n(k-n)}{k} \quad, n, m=1, \ldots, k-1
$$

RR Atates use the Parafermion CFT (Zamolodchicov \&Fateev, 1985)

$$
\Psi_{R R}\left(\left\{z_{i}\right) \sim\left\langle\psi_{1}\left(z_{1}\right) \ldots \psi_{1}\left(z_{N}\right)\right\rangle \prod_{i<j}\left(z_{i}-z_{j}\right)^{M+\frac{2}{k}} \times \text { gausticns } \left\lvert\, \begin{array}{l}
\text { Gepher } K Q(u, 1401 \\
\begin{array}{l}
\text { anishes when } \\
k+1 \text { particles } \\
\text { come together. } \\
\text { clustering }
\end{array}
\end{array}\right.\right.
$$

$M \in \mathbb{Z}$ divisith by $k ; M$ even: bosms, M odd: fermions; $V=\frac{k}{M k+2}$ The most interesting cacac is $k=3\left(\mathbb{Z}_{3}\right)\left(\nu=\frac{3}{2}(B), \frac{3}{5}(F)\right)$
In addution to the \mathbb{Z}_{3} parafermion, it has a Fibonaci angon τ
Fusion rule: $\tau * \tau=I+\tau \Rightarrow$ its unitary braiding matrices cover SU(2) (Fibonacci sequena)
\Rightarrow universal quantum computer

Effective Field Theory Approaches (Frudhin, Nayak, Schoutens, 1999
We will discuss booms for simplicity,$v=\frac{k}{2}$
Consider k layers of bosons in a $v=\frac{1}{2}$ Langhlin ot ate

$$
\Psi_{1 / 2} \sim \prod_{i<j}\left(z_{i}-z_{j}\right)^{(2)} \times \operatorname{ganssians}
$$

For each layer $a=\underset{L}{6} \varepsilon_{\mu \nu \lambda} a^{\mu} \partial^{\nu} a^{\lambda}+\cdots(1)_{2}$

$$
\equiv \frac{(2)}{4 \pi} a d a+\frac{1}{2 \pi} A d a+\cdots
$$

Symmetry $\underbrace{U(1)_{2} \times \cdots \times \cup(1)_{2}}_{k \text { factors }}$
Chern-Simons $U(1)_{2} \longleftrightarrow$ SU(2) ${ }_{1}$ group is non-ablian $\begin{aligned} & \text { level -rank } \\ & \text { duality }\end{aligned} \quad I, e^{i \varphi / \sqrt{2}} \quad \quad j=0, \frac{1}{2} \quad$ the braids are abelian

Q: how to get to a state with non-abalian statistics?
Hint: somehow we need a theory on $S \cup(2)_{k}$
fou need $U(1)_{2} \times \ldots \times \cup(1)_{2} \rightarrow S \cup(2)_{k}$
(A)(1) Use the Chern-Simons level-rank duality

$$
\operatorname{SU}(2)_{1} \times \cdots \times \operatorname{sU}(2)_{1}
$$

(2) construct a condensate $\rightarrow S U(2)_{k}$

The 1999 paper did this by condensing pairs

$\left\langle\phi_{j} \phi_{j+1}\right\rangle \neq 0$ of exatations on two layers at a time
\Rightarrow Hiss (Meisrner) mechanism projects onto
a state with symustrg $S \cup(2)_{k}$ (clustering)
1999 was basically right (but not completely)
\Rightarrow Dualities Solve the problem

Construction of a Fibonaci FQH state (Goldman, sonal, EF, 2021)
*Want a FQH ritate with only Fibonacci anyous
$\tau * \tau=1+\tau$ (and no other anyons)
\Rightarrow Universal quantam computing ($3 \tau^{\prime}$ s form a qubit)
Topological QFT?

$$
\begin{aligned}
& \text { Topological Qri! } \\
& \left(G_{2}\right)_{1} \leftrightarrow 2_{3,1}=\frac{S U(2)_{3} \times U(1)_{2}}{\mathbb{Z}_{2}} \\
& \mathcal{L}_{\text {Fib }}=\frac{3}{4 \pi} \operatorname{Tr}\left[a d a-\frac{2}{3} i a^{3}\right]-\frac{1}{4 \pi} \operatorname{Tr}[a] d \operatorname{Tr}[a]+\frac{1}{4 \pi} \operatorname{Ar} d \operatorname{Tr}[a] \\
& \begin{array}{c}
\hat{i} \\
\delta U(2) \text { gange field }
\end{array}
\end{aligned}
$$

$$
\Rightarrow \quad v=2 \quad\left(\sigma_{x y}=2 \frac{e^{2}}{h}\right)
$$

* Start with 3 layers of Diracs at $v=2 \rightarrow 1$ transition (IQH)

$$
\mathcal{L}=\sum_{n=1}^{3}\left[\begin{array}{l}
\left.\bar{\Psi}_{n}\left(i D_{A}-M\right) \Psi_{n}-\frac{3}{2} \frac{1}{4 \pi} A d A\right] \\
D_{A}=\partial-i A
\end{array}\right.
$$

parity anomaly

Duality: Free Dirac $\psi \leftrightarrow$ wilsm-Fisher bosom $\phi+U(N)_{1}$ OK since $U(N)_{1} \leftrightarrow \mathcal{L}_{\text {eff }}=-\frac{V}{4 \pi} A d A \quad$ (trivial)

* Set $N=2$

$$
\begin{aligned}
& \text { Set } N=2 \\
& \mathcal{L}=\sum_{n}\left[\left|D a_{n} \phi_{n}\right|^{2}-r\left|\phi_{n}\right|^{2}-|\phi|^{4}+\mathcal{L}_{c s}\left[a_{n}\right]\right]+\frac{1}{2 \pi} A d \operatorname{Tr}\left[a_{1}-a_{2}+a_{3}\right] \\
&
\end{aligned}
$$

* Clustering: $\left\langle\Gamma_{m n}\right\rangle=\left\langle\phi_{m}^{\dagger} \phi_{n}\right\rangle \neq 0(m \neq n),\left\langle\phi_{n}\right\rangle=0$
\Rightarrow Pins $a_{1}=a_{2}=a_{3} \equiv a \Rightarrow \frac{1}{2 \pi} A d \operatorname{Tr}\left[a_{1}-a_{2}+a_{3}\right] \equiv \frac{1}{2 \pi} A d \operatorname{Tr}[a]$
* The physical densities are pinned $\rho_{1}=-\rho_{2}=\rho_{3}$
\Rightarrow layer exchange symmetry is broken

$$
\Rightarrow \mathscr{L}_{u(v)_{3}}=3 \mathcal{L}_{c s}[a]+\frac{1}{2 \pi} A d \operatorname{Tr}[a]
$$

* To get Fibonacci \Leftrightarrow attach a unit of flux to the fermions \Rightarrow fermions \rightarrow bosons
flux attachment: $\quad 3 \mathcal{L}_{C S}[a]+\frac{1}{2 \pi} \hat{\imath} d \operatorname{Tr}[a]+\frac{1}{4 \pi}(b+A) d(b+A)$
fluctuating
$u(1)$ gauge field
* Integrating out $b_{\mu} \Rightarrow$ obtain $\mathcal{L}_{\text {Fib }}$!
\Rightarrow interpret $\Phi^{+} t^{a} \phi$ as the Fibonacci any τ
* Alternatively we can attach (+) fin x to layers 1,3
and G) to layer 2
before clustering
\Rightarrow layers 1,3 become $\left|D_{A} \Phi\right|^{2}+\frac{2}{4 \pi} A d A \quad$ (trivial)
|ayer 2: $\left|D_{\alpha} \Phi\right|^{2}+\frac{2}{4 \pi} \alpha d \alpha+\frac{2}{4 \pi} \beta d \beta+\frac{1}{2 \pi} \alpha d \beta+\frac{1}{2 \pi} \beta d A$
layer $2 \Rightarrow$ Halperin $(2,2,1)$ state

One can use this construction to derive the Fibonacci wave functim!

* Non-Abelian dualitis can be used to understand the landsccup of non-abelian FQH states
* define physical parent state
* construct ideal cuave functions uring CFT methods * hopefilly to find sinple Hainiltomians!
* Opers a win low to unversel TQC!

References: Goldman, Sohal, \&F $\left.\quad \begin{array}{r}P R B 100,115111(2019) \\ 102,195151(2020) \\ 103,235118(2021)\end{array}\right]$

