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Outline
� Inhomogeneous Phases areinherentto Doped Mott Insulators

� Charge Order and Superconductivity: friend or foe?

� High Tc Superconductivityin a Striped Hubbard Model

� Isolated doped Hubbard Ladders as theprototype spin-gap systems

� EstimatingTc: How high is high?

� Conclusions and Open Questions
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What do experiments tell us
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P. Abbamonteet al, Nature Physics1, 155 (2005)

Stripe charge orderin underdoped high temperature superconductors (La2� x Srx CuO4 , non-SC

La2� x Bax CuO4and YBa2Cu3O6+ y ) (Tranquada (neutrons), Mook (neutrons), Ando (transport),

Abbamonte (resonant X-ray scattering))
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S. Kivelsonet al, Rev. Mod. Phys.75, 1201 (2003)

Coexistence of�uctuating stripe charge order and superconductivityin LSCO and YBCO (Mook,

Tranquada)
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Similarity of high energy neutron spectra in La2� x Srx CuO4 , non-SC La2� x Bax CuO4 ,

YBa2Cu3O6+ y and the ladder material Sr14 Cu24 O41 (Tranquada, Mook, Keimer, Buyers)
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T. Valla et al, Science314, 1914 (2006).

Evidence ofthe existence of an optimal degree of inhomogeneity in La2� x Bax CuO4 (ARPES)
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J. Hoffmanet al, Science295, 466 (2002)

Induced charge order in the SC phase in vortex halos: neutrons in La2� x Srx CuO4 (B. Lake), STM in

Bi2Sr2CaCu2O8+ � (Davis)
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C. Howaldet al, PNAS100, 9705 (2003)

STM Experiments:short range stripe order(on scaleslong compared to� 0 ), possible broken

rotational symmetry (Bi2Sr2CaCu2O8+ � and Ca2� x Nax CuO2Cl2 ) (Kapitulnik, Davis, Yazdani)
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Kohsakaet al, Science315, 1380 (2007)
Short range stripe order in Dy-Bi2Sr2CaCu2O8+ �

STM R maps at 150 mV

R(~r; 150mV ) = I (~r; +150 mV )=I (~r; � 150mV ).
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C. Panagopouloset al, PRL96, 040702 (2006); J. Bonettiet al, PRL93, 037002 (2004)

Transport experiments give evidence forcharge domain switching in YBa2Cu3O6+ y nanowires(Van

Harlingen and Weissmann) andhysteretic effectsin the “normal state” of

La2� x Srx CuO4 (Panagopoulos)
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Electron Liquid Crystal Phases
S. Kivelson, E. Fradkin, V. Emery, Nature393, 550 (1998)

Doping a Mott insulator: inhomogeneous phases arise due to the competition
betweenphase separationandstrong correlations

� Crystal Phases: break all continuous translation symmetries and rotations

� Smectic (Stripe)phases: break one translation symmetry and rotations

� NematicandHexaticPhases: are uniform and anisotropic

� Uniform �uids: break no spatial symmetries

High Tc Superconductors: Lattice effects) breaking of point group
symmetries
If lattice effects are weak(highT) ) continuous symmetries essentially
recovered
2DEG in GaAs heterostructures) continuous symmetries
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Electronic nematic state in the 2DEG in high magnetic �elds

J. Eisensteinet al, PRB82, 394 (1999)
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Electronic nematic phase in Sr3Ru2O7

R. Borzi, S. Grigera, A. P. Mackenzieet alScience,315, 214 (2007).

B. Keimer �nds a similarnematic state in YBa2Cu3O6+ y at y = 0 :4 for T . 150K !.
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Electronic Liquid Crystal Phases in HighTc
Superconductors

� Liquid: Isotropic, breaks no spacial symmetries; either a conductor or a
superconductor

� Nematic: Lattice effects reduce the symmetry to a rotations by�= 2
(“Ising”); translation and re�ection symmetries are unbroken; it is an
anisotropic liquid with a preferred axis

� Smectic: breaks translation symmetry only in one direction but liquid-like
on the other; Stripe phase; (in�nite) anisotropy of conductivity tensor

� Crystal(s): electron solids (“CDW”); insulating states.
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Soft Quantum Matter

or

Quantum Soft Matter
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Stripe Phases and the Mechanism of highTc
superconductivity in Strongly Correlated Systems

Since the discovery of highTc superconductivity it has been clear that

� High Tc Superconductors are never normal metalsanddon't have well
de�ned quasiparticles in the “normal state”(linear resistivity, ARPES)

� the “parent compounds” are strongly correlated Mott insulators

� repulsive interactions dominate

� the quasiparticles are an `emergent' low-energy property of the
superconducting state

� whatever “the mechanism” is has to account for these facts
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Problem
BCS is so successful in conventional metalsthat the termmechanismnaturally
evokes the idea of aweak coupling instabilitywith (write here your favorite
boson) mediating an attractive interaction betweenwell de�ned quasiparticles.
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Superconductivity in a Doped Mott Insulator
or

How To Get Pairing from Repulsive Interactions

� Universal assumption: 2D Hubbard-like models should contain the essential
physics

� “RVB” mechanism:

– Mott insulator: spins are bound in singlet valence bonds; itis a strongly
correlated spin liquid, essentially apre-paired insulating state

– spin-charge separation in the doped state leads to highTc

superconductivity
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Problems

� there is no real evidence that the simple 2D Hubbard model favors
superconductivity(let alone highTc superconductivity)

� all evidence indicates that if anything it wants to be an insulator and to phase
separate(�nite size diagonalizations, various Monte Carlo simulations)

� strong tendency for the ground states to be inhomogeneous and possibly
anisotropic

� no evidence (yet) for a spin liquid in 2D Hubbard-type models
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Why an Inhomogeneous State is Good for highTc
superconductivity

� An “inhomogeneity induced pairing” mechanism of highTc superconductivity in
which the pairing of electrons originates directly from strong repulsive interactions.

� Repulsive interactions lead to local superconductivity on`mesoscale structures'

� The strength of this pairing tendency decreases as the size of the structures increases
above an optimal size

� The physics responsible for the pairing within a structure) Coulomb frustrated
phase separation) mesoscale electronic structures

� Strong local pairing does not guarantee a large critical temperature

– In an isolated system, the phase ordering (condensation) temperature is
suppressed by phase �uctuations, often toT = 0

– The highest possibleTc is obtained with an intermediate degree of
inhomogeneity

– The optimalTc always occurs at a point of crossover from a pairing dominated
regime when the degree of inhomogeneity is suboptimal, to a phase ordering
regime with a pseudo-gap when the system is too `granular'
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Stripe Hubbard Model
A Cartoon of the Strongly Correlated Stripe Phase
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Physics of the 2-leg ladder

t

t 0

U

V

E

p

E F

p F 1� p F 1 p F 2� p F 2

� ForU = V = 0 there are two bands of states

� The bands have different Fermi wave vectors,pF 1 6= pF 2

� The only allowed scattering processes involve anevennumber of electrons

(momentum conservation)

� The coupling of CDW �uctuations withQ1 = 2 pF 1 6= Q2 = 2 pF 2 is suppressed
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Why is there a Spin Gap
� Scattering of electron pairs with zero center of mass momentum from one system to

the other is peturbatively relevant

� The electrons can gain zero-point energy by delocalizing between the two bands.

� The electrons need to pair, which may cost some energy.

� When the energy gained by delocalizing between the two bandsexceeds the energy
cost of pairing, the system is driven to a spin-gap phase.
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What is it known about the 2-leg ladder
� At x = 0 there is aunique fully gapped ground state(“C0S0”); for U � t ,

� s � J=2

� For0 < x < x c � 0:3, Luther-Emery liquid: no charge gap and large spin gap
(“C1S0”); spin gap� s # asx " , and� s ! 0 asx ! xc

� Effective Hamiltonian for the charge degrees of freedom

H =
Z

dy
vc

2

�
K (@y � )2 +

1
K

(@x � )2
�

+ : : :

� : CDW phase �eld;� : SC phase �eld;[� (y0); @y � (y)] = i� (y � y0)

� x-dependence of� s , K , vc , and� depends ont0=t andU=t

� : : : represent cosine potentials: Mott gap� M atx = 0
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� Excitations forx ! 0 are spinless charge2e fermionic solitons

� K ! 2 asx ! 0; K � 1 for x � 0:1, andK � 1=2 for x � xc

� ladder superconducting suceptibility:� SC � � s=T2� K � 1

� ladder CDW suceptibility:� CDW � � s=T2� K

� � CDW (T ) ! 1 and� SC (T ) ! 1 for 0 < x < x c

� Forx . 0:1, � SC � � CDW !
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Effects of Inter-ladder Couplings
� In the Luther-Emery phase,0 < x < x c , there is a spin gap andsingle particle

tunneling is irrelevant

� Second order processes in�t :

– marginal(and small) forward scattering inter-ladder interactions

– Relevant Perturbations: Inter-ladder Josephson couplingsandInter-ladder CDW
couplings

H 0 = �
X

J

Z
dy

h
J cos

� p
2� � � J )

�
+ V cos

�
� PJ y +

p
2� � � J )

�i

J : ladder index;PJ = 2 �x J , � � J = � J +1 � � J , etc.

– J andV are effective couplings which must be computed from microscopics

– Estimate:J � V / (�t )2=J
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Period 2 works forx � 1
� If all the ladders are equivalent, a period 2 stripe ordered or column state

� For an isolated ladderTc = 0

� J 6= 0 andV 6= 0 , TC > 0

� Forx . 0:1 CDW couplings are irrelevant(1 < K < 2): Inter-ladder
Josephson coupling leads to a superconducting state in a restricted range of
smallx with rather lowTc

2J � SC(Tc) = 1

� Tc / �tx

� For largerx, K < 1 and� CDW is more strongly divergentthan� SC

� CDW couplings become more relevant) Insulating, incommensurate
CDW state with ordering wave numberP = 2 �x .
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Why Period 4 works
� Consider an alternating array of A and B type ladders (with different

electron af�nities) in the LE regime

� SCTc:

(2J )2� A
SC(Tc)� B

SC(Tc) = 1

� CDW Tc:

(2V)2� A
CDW (P; Tc)� B

CDW (P; Tc) = 1

� 2D CDW order is greatly suppressed due to the mismatch between ordering
vectors,PA andPB , on neighboring ladders
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� For inequivalent ladders SC beats CDW if

2 > K � 1
A + K � 1

B � K A ; 2 > K � 1
A + K � 1

B � K B

�

Tc � � s

�
J
fW

� �

; � =
2K A K B

[4K A K B � K A � K B ]

� J � �t 2=J andfW � J ; Tc is (power law) small for smallJ ! ( � � 1).
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How reliable are these estimates?
� This is amean-�eld estimatefor Tc and it is anupper boundto the actualTc.

� Tc should be suppressed by phase �uctuationsby up to a factor of 2.

� Indeed,perturbative RG studiesfor smallJ yield thesame power law
dependence. This result isasymptotically exactfor J << fW .

� SinceTc is a smooth function of�t= J , it is reasonable toextrapolate for
�t � J .

� ) Tmax
c / � s ) high Tc.

� This is in contrast to theexponentially smallTc as obtained in aBCS-like
mechanism.
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Schematic Phase Diagram for Period 2 and Period 4

Tc

� s (x)

0
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xxcxc(2) xc(4)

J
2

� The broken line is the spin gap� s (x) as a function of dopingx

� xc(2) andxc(4) indicates the SC-CDW quantum phase transition for the period 2

and period 4 cases

� Forx & xc the isolated ladders do not have a spin gap; in this regime thephysics is
different involving low-energy spin �uctuations
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Open Questions
� a period 2 modulation can produce superconductivity with arelatively low

Tc in a restricted doping range

� a period 4 modulation produceshigherTc's on a broader range of doping

� Tc is only power-law small, with � � 1

� no exponential suppression ofTc ) “high Tc”

� This model is cartoon of the symmetry breaking of stripe (smectic) state

� It has alarge spin gapand it does not have low-energy spin �uctuations

� the order-parameter isd-wave like: it changes sign under�= 2 rotations

� It does not havenodal fermionic excitations

� Nodal fermions may appear upon a (Lifshitz) transition at largerx
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Punch Line
� Long held belief: charge order competes and suppresses superconductivity

� Electronic liquid crystal phases, not onlycan coexist with superconductivity
but can alsoprovide a mechanism for highTc superconductivity.

� Inhomogeneous phases:natural local pairing mechanismwith purely
repulsive interactions

� This mechanismis notdue to anin�nitesimal instability

� Underlying normal stateis not a Fermi liquidandit does not have
quasiparticles

� Tc scales like a simplepowerof a coupling instead of an exponential
dependence
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