Physics 504: Statistical Mechanics Department of Physics, UIUC Spring Semester 2013 Professor Eduardo Fradkin

Problem Set No. 1: The Microcanonical Ensemble Due Date: February 3, 2013

In this problem set we will consider the statistical mechanics of a set of N atoms. The atoms are at fixed postions. Each atom has a spin-1/2 magnetic moment. A magnetic field $\vec{B} = B\hat{z}$ is present. We will assume that the spins are sufficiently far away from each other that we can ignore spin-spin interactions. Thus, the only energy involved in this system is the Zeeman energy.

Let N_{\uparrow} be the number of atoms with spin up and N_{\downarrow} be the number of atoms wit spin down. The total (Zeeman) energy of the system with $N=N_{\uparrow}+N_{\downarrow}$ spins is given by the Hamiltonian

$$H = -\mu B(N_{\uparrow} - N_{\downarrow}) \tag{1}$$

where we have absorbed in the quantity μ both the Bohr magneton and the magnitude of the spin magnetic moment.

- 1. Derive a formula for g(N, E) the number of configurations of this system with N spins and total energy E, in terms of N and E alone.
- 2. Derive an expression for the entropy S(N,E,B) of this system in the limit $N_{\uparrow}\gg 1$ and $N_{\downarrow}\gg 1$.

Note: use the Stirling approximation

$$\log N! = N \log N - N + \frac{1}{2} \log(2\pi N) + O(\frac{1}{N})$$
 (2)

where we have used the notation $\log N = \ln N$. Show that the entropy is *extensive*.

- 3. Find an asymptotic expresssion for the energy dependence of the entropy S(N, E, B) in the limits:
 - (a) Near E_{\min} , the minumum of the total energy E. What is the value of E_{\min} ? What is the entropy at E_{\min} ? Explain your result.
 - (b) Near the energy E^* where the entropy is at a maximum. For what value of the E^* ? What is the value of the entropy at E^* ? Give an intuitive explanation for this value of the entropy.

- 4. Use the results you derived above to find an expression for the temperature T of this system of spins when the total energy is E.
- 5. Use the results you derived above to find an expression for the temperature dependence of the expected number of downspins in the limits: (a) $T \to 0$, and (b) $T \to \infty$. What is the energy scale E_0 separating these regimes? Write E_0 in terms of the parameters of the Hamiltonian.
- 6. Use your results to find a general expression for the specific heat of this system (at constant B) as a function of temperature, and find the asymptotic behavior of the specific heat in the low and high temperature regimes.
- 7. How does the temperature of the system behave for $E > E^*$? Explain your answer.
- 8. Imagine now that we have two spin systems, each with N spins and both interacting with the same magnetic field. Let us call these systems I and II. Suppose that system I is in a state with all its spins pointing up, and that system II is in a state with half of its spins pointing up and half of its spins pointing down (assume that N is even). If we were to allow these systems to become in thermal contact with each other, find
 - (a) The temperature of the final common equilibrium state. What were their initial temperatures?
 - (b) The change in the total entropy. Has it increased or decreased? Explain your result.