Physics 504: Statistical Mechanics Department of Physics, UIUC Spring Semester 2013 Professor Eduardo Fradkin

Problem Set No. 3:

Diffusion, Random Walks and Quantum Mechanics at Finite Temperature

Due Date: March 4, 2013, 9:00 am

1 The Boltzmann Transport Equation

In this problem you will consider the relation between the Boltzamnn Transport Equation and Conservation Laws. Let $f(\vec{r}, \vec{p}, t)$ be the one-particle distribution function for gas of molecules of mass m. Let us denote by $\{\vec{p}_1, \vec{p}_2\} \to \{\vec{p}_1, \vec{p}_2\}$ an arbitrary two-particle collision taking place at \vec{r} . Let $X(\vec{r}, \vec{p}) \equiv X$ be a physical property of the molecules that is conserved by the collision, i. e. $X_1 + X_2 = X_1' + X_2'$.

1. Let us denote the collision term of the Boltzmann Transport equation by $\left[\frac{\partial f}{\partial t}\right]_{\text{coll}}$, and assume that it obeys the Boltzmann approximation. Show that

$$\int d^3 p \ X(\vec{r}, \vec{p}) \left[\frac{\partial f}{\partial t} \right]_{\text{coll}} = 0$$

for all conserved quantities $X(\vec{r}, \vec{p})$.

2. Use this result and the Boltzmann Transport Equation to prove the following Conservation Theorem

$$\frac{\partial}{\partial t}\langle nX\rangle + \frac{\partial}{\partial \vec{r}}\cdot\langle n\vec{v}X\rangle - n\langle \vec{v}\cdot\frac{\partial X}{\partial \vec{x}}\rangle - \frac{n}{m}\langle \vec{F}\cdot\frac{\partial X}{\partial \vec{v}}\rangle - \frac{n}{m}\langle X\frac{\partial}{\partial \vec{v}}\cdot\vec{F}\rangle = 0$$

Here \vec{F} are the external forces and $\vec{v} = \frac{\vec{p}}{m}$ the velocity, and we have use the notation

$$\langle A \rangle = \frac{1}{n} \int d^3p \ A \ f(\vec{r}, \vec{p}, t), \qquad n = \int d^3p \ f(\vec{r}, \vec{p}, t)$$

3. Use the Conservation Theorem to derive a conservation law for (a) mass, (b) momentum and (c) energy, for $X=m, \ \vec{X}=m\vec{v}$ and $X=\frac{1}{2}m(\vec{v}-\vec{u}(\vec{r},t))^2$ respectively, where $\vec{u}(\vec{r},t)\equiv\langle\vec{v}\rangle$. Write each conservation law in the form of a continuity equation in terms of the mass density $\rho(\vec{r},t)\equiv m\int d^3pf(\vec{r},\vec{p},t)$, the average velocity $\vec{u}(\vec{r},t)$, the temperature $kT=\theta(\vec{r},t)\equiv$

 $\frac{1}{3}m\langle(\vec{v}-\vec{u})^2\rangle,$ the heat flux $\vec{q}\equiv\frac{1}{2}m\rho\langle(\vec{v}-\vec{u})\;(\vec{v}-\vec{u})^2\rangle$, the pressure tensor $P_{ij}\equiv\rho\langle(v_i-u_i)(v_j-u_j)\rangle$ and the velocity strain tensor $\Lambda_{ij}\equiv=m\frac{1}{2}\left(\frac{\partial u_i}{\partial x_j}+\frac{\partial u_j}{\partial x_i}\right)$.

4. Find the explicit form of the conservation laws you just derived for the case in which $f(\vec{r}, \vec{p}, t)$ is a Maxwell-Boltzmann distribution with temperature $kT = \theta$ and average velocity $\vec{u}(\vec{r}, t)$ which are both slowly varying functions of \vec{r} and t. Show that the conservation laws you just derived coincide with the laws of hydrodynamics for a non-viscous flow.

2 Random Walks and Diffusion

Consider the problem of the random walker in d dimensions on a (hyper)cubic lattice with lattice spacing a.

- 1. Show that the rules for the moves of a random walker on a lattice can be obtained by integrating a Langevin equation over a time step τ .
- 2. Derive the equation of motion satisfied by the probability $P(\vec{r}, \vec{0}, N)$ of finding the random walker at site \vec{r} in exactly N time steps of time lapse τ , having begun its journey at the origin $\vec{0}$.
- 3. Give a detailed and careful derivation of the continuum version of this equation. Explain how do you extract the probability distribution in the continuum limit, $\mathcal{P}(\vec{x}, \vec{0}, t)$. Find an explicit expression for the diffusion constant in terms of the natural parameters of the random walk.
- 4. Find an expression for the total probability of finding the random walker at \vec{r} after at most a time t. How is it related to the probability $P(\vec{r}, \vec{0}, N)$? Justify your answer.
- 5. Find an explicit result for the probability to return to the origin in at most a time t in the continuum limit in d dimensions. What happens to your result if d = 2?

3 Langevin Equation in a Force Field

Consider a particle of coordinate \vec{x} in three dimensions interacting with a gas which will be regarded as a continuum. The effects of the interactions between the particle and the molecules of the gas is represented by a random force $\vec{\eta}(\vec{x},t)$. These random forces are correlated time according to the law $\langle \eta_i(t)\eta_j(t')\rangle = \Gamma \delta_{ij}\delta(t-t')$ (i,j=1,2,3). The friction coefficient is γ . The particle is also subject to the effects of a conservative force $\vec{F} = -\vec{\nabla} U$, with $U = U_0 \exp(-\vec{r}^2/2\xi^2)$, with $U_0 > 0$ and $\xi > 0$.

1. Derive the Fokker-Planck equation for the probability $P(\vec{x},t)$ to find the particle at \vec{x} at time if it departed from the origin at t=0.

- 2. Find the equilibrium distribution $P_0(\vec{x}) = \lim_{t\to\infty} P(\vec{x},t)$. Show that it has a Gibbs form. What combination of parameters plays the role of kT?
- 3. Find an expression for $P(\vec{x}, t)$ in terms of a path integral. What plays the role of the "classical action" in this case? What boundary conditions does your path integral obey?
- 4. Consider the case in which U_0 is small. Find a dimensionless combination of U_0 , γ and Γ to make your answer more concrete. Use first order perturbation theory to compute the difference between the true probability distribution $P(\vec{x},t)$ at time t and the free walker distribution for the same time t.
- 5. Use the result you just derived to compute the total probability of return to the origin. Discuss the physical meaning of the dependence of your result upon U_0 .

4 Path Integral and the Density Matrix

Consider a particle of mass m and position vector \vec{x} in three dimensions, moving in a conservative force field $\vec{F} = -\nabla U(\vec{x})$. The particle is in thermal equilibrium with a heat bath at temperature T. The partition function for this particle is

$$Z = \operatorname{tr} e^{-\beta H}$$

where H is the quantum mechanical Hamiltonian.

- 1. Derive the path integral representation for the partition function Z. Make sure you establish what boundary conditions you need to use and why.
- 2. Assume that the potential $U(\vec{x}) = U(|\vec{x}|)$ is isotropic and that it has a global minimum at $\vec{x} = 0$ where it takes the value U(0) < 0, and that it remains negative for some finite distance a. Use the semiclassical methods described in class to compute an approximate expression for this partition function valid in the regime $kT \ll |U_0|$.
- 3. Find the free energy of this system. Compare it with the free energy of a three-dimensional harmonic oscillator at temperature T.