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1 Statistical Mechanics of a Gas of Photons

Consider a gas of photons in equilibrium at temperature T . Since photons are
not conserved it is not possible to fix the density of this gas and hence the
chemical potential is zero. The Hamiltonian is

Ĥ =
∑

~k,s=±

h̄ω(~k) â†s(
~k)âs(~k) + E0

where s = ± labels the two polarizations of the photons, the dispersion relation
is ω(~k) = c|~k|, and E0 is the ground state energy.

1. Calculate the free energy per unit volume of this gas at temperature T .
You may leave your result in the form of a momentum (or rather wave
vector) integral.

2. Use the result you just derive to calculate the internal energy density and
the specific heat of this gas at temperature T . Show that the internal
energy density has the form

U

V
= σT p

and compute the coefficient σ and the exponent p. Use the following
integral

∫ ∞

0

dx
x3

ex − 1
=

π4

15

3. The low energy excitations of a quantum ferromagnet are waves called
magnons. Magnons have a dispersion relation

ω(~k) = A|~k|2

where A is a constant proportional to the exchange energy. Unlike pho-
tons, magnons have only one polarization state and like photons magnons
are not conserved either. Using this information, calculate the exponent
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p for the case of magnons. What would the exponent p be for some hypo-
thetical particles which obeyed instead a general power law dispersion of
the form

ω(~k) = const.|~k|r

where r is some exponent?

4. Use these results to derive the Planck distribution, U(ν, T ), for the number
of photons per unit volume of either polarization with frequency between
ν and ν + dν, per unit frequency, at temperature T .

2 The Phase Transition in the Ideal Bose Gas

In class we discussed the non-relativistic ideal Bose gas of particles of mass M
in some detail. In this problem you will work with these results and use them
to find the thermodynamic properties of this gas at temperature T and specific
volume v.

1. Consider first the low density, v ≫ vc, or equivalently high temperature
limit T ≫ Tc, of the ideal Bose gas. Show that the equation of state
of the ideal Bose gas in the low density lim it has the form of the virial
expansion. Calculate the second virial coefficient for this gas and compare
your result with the corresponding one for a dilute interacting classical
gas. What does the sign of this result tell you?

2. Rederive the formula for the condensate fraction 〈n0〉/〈N〉 for all T ≤ Tc,
as well as the expression for Tc.

3. We showed in class that the thermodynamic properties of the ideal Bose
gas can be written in terms of the function g5/2(z)

g5/2(z) =
∞
∑

n=1

zn

n5/2

where z is the fugacity. We gave detailed expressions for small values of
z. Here you will be doing calculations close to the phase transition where
z → 1−. In this regime the asymptotic behavior of this function is (F.
London )

g5/2(z) = a0(| log z|)3/2 + a1 − a2| log z|+O(| log z|2)

where a0 = 2.363, a1 = 1.342 and 2.612 . . . = ζ(3/2) approximately. Use
this expansion to show that the the slope of the specific heat of an ideal
Bose gas has a discontinuity at Tc given by

(

∂Cv

∂T

)

T→T+
c

−
(

∂Cv

∂T

)

T→T−

c

= 3.66
NkB
Tc
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4. In the lectures we worked out in detail the behavior of the one-particle
density matrix or correlation function of the order parameter. Here you
will consider the density-density correlation function:

Γ(~x) = 〈ρ(~x)ρ(0)〉 −
(

N

V

)2

where ρ(~x) = â†(~x)â(~x) is the density operator. Show that

Γ(~x) =
1

V 2

∑

~k 6=~q

ei(
~k−~q)·~x〈n̂(~q)(n̂(~k) + 1)〉−−−−−→

V → ∞

∣

∣

∣

∣

∣

1

V

∑

~k

ei
~k·~x〈n̂(~k)〉

∣

∣

∣

∣

∣
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Use these results to determine the long distance behavior of the density-
density correlation function both above Tc and below Tc.

3 Thermodynamics of the Ideal Fermi Gas

In this problem you will work out the thermodynamic properties of an ideal
spinless non-relativistic Fermi gas at finite temperature T and density 1/v, where
v is the specific volume.

1. Use the Grand Canonical Ensemble to show that the equation of state is
given by

P

kBT
=

1

λ3
T

f5/2(z)

1

v
=

1

λ3
T

f3/2(z)

where

f5/2(z) =
2√
π

∫ ∞

0

dx
√
x log(1 + z e−x) =

∞
∑

n=1

(−1)n+1 zn

n5/2

f3/2(z) =
2√
π

∫ ∞

0

dx

√
x

1 + z e−x
=

∞
∑

n=1

(−1)n+1 zn

n3/2

2. Show that in the low density (or high temperature) limit the equation of
state free Fermi gas also has the form of a virial expansion. Compute
the second virial coefficient. Compare your result with what you found
in problem 2 for the Bose gas. Give a physical explanation for whatever
differences you find.

3. Show that the density ρ = 1/v and the energy density u = U/V can be
written in the form

ρ =
1

4π2

(

2m

h̄2

)3/2 ∫ ∞

0

dǫ

√
ǫ

eβ(ǫ−µ) + 1

u =
1

4π2

(

2m

h̄2

)3/2 ∫ ∞

0

dǫ
ǫ3/2

eβ(ǫ−µ) + 1
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4. You will now use the integrals you just derived to investigate the low tem-
perature limit of this gas. You will need to use the Sommerfeld expansion
of these integrals:

I =

∫ ∞

0

dǫ
g(ǫ)

eβ(ǫ−µ) + 1

=

∫ µ

0

g(ǫ) dǫ+

∫ ∞

0

g(µ+ x/β)

ex + 1

dx

β
−
∫ βµ

0

g(µ− x/β)

ex + 1

dx

β

≈
∫ µ

0

g(ǫ) dǫ+
π2

6β2
g′(µ) + . . .

(1)

Use this approximation to compute the specific heat of a Fermi gas at
low temperatures. Write your answers in terms of the Fermi energy ǫF ,
the limiting value of the chemical potential at T = 0. Find the relation
between ǫF and the specific volume v.

5. Use the same approximation to calculate the pressure in a Fermi gas at
very low temperatures. What is the limiting value P0 of the pressure at
T = 0?
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