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1 The One-Dimensional Classical Ising Model

Consider a classical Ising model of a magnetic a chain of N sites and that there
is an Ising degree of freedom σn = ±1 on each site n = 1, . . . , N . We will assume
that the chain is closed into a ring, i.e. that the N +1st site coincides with the
1st site. We will further assume that the energy of a configuration E[σ] of this
magnet involves only interactions among nearest-neighboring sites

E[σ] = −J
N∑

n=1

σnσn+1 −H
N∑

n=1

σn

where J is the exchange interaction and H is the external magnetic field. We
will assume that J > 0 (ferromagnetic).

1. Show that the partition function of this Ising chain (with periodic bound-
ary conditions) is equal to the trace of the Nth power a 2 × 2 transfer
matrix T

Z = tr T N

Find an explicit expression of the matrix elements of the transfer matrix
in terms of the exchange interaction J , the magnetic field H and the
temperature T .

2. Find an explicit expression of the two eigenvalues t± of the transfer matrix
in terms of the exchange interaction J , the magnetic field H and the
temperature T .

3. Find an explicit expression for the free energy FN (T, J,H) for a chain of
N sites as a function of the exchange interaction J , the magnetic field H
and the temperature T .

4. Find the expression of the free energy in the thermodynamic limit, F∞ =
limN→∞ FN (T, J,H). Which eigenvalue of the transfer matrix determines
the expression of the free energy in the thermodynamic limit? Show that
in the thermodynamic limit the free energy is extensive and determine its
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explicit form as a function of T , J and H . Show that, in the thermody-
namic limit and in the limit H → 0, the free energy is continuous and at
least twice differentiable function of T for all T > 0 and that, as a conse-
quence, that the classical Ising chain does not have any finite temperature
phase transition.

5. Use the thermodynamic free energy F∞(T, J,H) to find explicit expres-
sions for

(a) The local magnetization m(T, J,H)

(b) The magnetic susceptibility χ(T, J,H)

(c) The entropy S(T, J,H)

(d) The specific heat c(T, J,H)

Determine the behavior of all four thermodynamic quantities as functions
of T , J and H , in the limits of a) low tempertature and b) high tempera-
ture. (Low and high relative to what?). Discuss in particular the behavior
of the magnetization in the limits H → 0 and T → 0.

2 Mean-Field Theory

In this problem we will consider a variant of the Ising model within the mean
field approximation. Let us consider an antiferromagnetic 2D Ising model on a
square lattice with N sites in the presence of an uniform magnetic field h. Since
the square lattice is bipartite we will denote by [rA] the sites on the A sublattice
and by [rB] the sites of the B sublattice. That the lattice is bipartite means that
the four nearest-neighboring sites of every site of the A sublattice belong to the
B sublattice (and vice versa). Upon flipping the spins on one sublattice (say
B) this problem is the same as an Ising ferromagnet in a staggered magnetic
field (which takes opposite values on the sites of the two sublattices). The
Hamiltonian of a configuration [σ] now is

H [σ] = −J
∑

〈rA,rB〉

σ(rA)σ(rB)− h
∑

rA

σ(rA) + h
∑

rB

σ(rB)

where J > 0 and H > 0, and 〈rA, rB〉 denotes nearest-neighboring sites.
You will examine this problem using the variational principle discussed in

class. Let us denote by H0 the Hamiltonian of our variational ansatz. The
variational principle states that the free energy F of the exact problem has the
upper bound F̃

F ≤ F̃ = F0 + 〈H −H0〉0

where F0 is the free energy for the Gibbs ensemble of H0, and 〈O〉0 denotes the
expectation value of the observable O in the Gibbs ensemble of H0. Since we
have a problem in with two sublattices we will use the following mean-field H0

H0 = −hA

∑

rA

σ(rA)− hB

∑

rB

σ(rB)
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where hA and hB are two variational parameters.

1. Show that the magnetic field h does not break the Z2 symmetry of flipping
all spins simultaneously.

2. Consider the full Hamiltonian H at zero temperature. Show that there is
a ground state phase transition as a function of the magnetic field h from
the antiferromagnetic state (which in the language of the HamiltonianH is
the uniform state) to a ferromagnetic configuration (which in the language
of the Hamiltonian H is a staggered configuration). Find the value of the
critical field hc at which this phase transition at T = 0 takes place. In the
following sections you will study the extension of this phase transition for
T > 0 using mean-field theory.

3. Show that the variational free energy F̃ has the following expression

F̃ = F0(βhA, βhB)− 4NJ〈σA〉0〈σB〉0

−
1

2
Nh

(
〈σA〉0 − 〈σB〉0

)
+

1

2
N
(
hA〈σA〉0 + 〈σB〉0

)

where β = 1/(kT ). Here

〈σA〉0 ≡ mA = m+ n, 〈σB〉0 ≡ mB = m− n

are the magnetizations of the two sublattices in the Gibbs ensemble of H0.
We will identify m with the order parameter of this phase transition.

4. Show that the mean-field equations for the variational parameters hA and
hB for this problem, obtained by requiring that F̃ be as small as possible,
are

mA = tanh(βh− 4βJmB))

mB = tanh(−βh+ 4βJmA)

5. Use the mean field equations of the preceding section to show that there
is a continuous phase transition from a state with m = 0 to a state with
m 6= 0. Find the an expression for the phase boundary Hc(Tc) where the
antiferromagnetic order parameter m first appears.

6. Expand the free energy F̃ in powers of the order parameter m of the form

F̃ = A+Bm2 + Cm4 +O(m6)

and find explicit expressions for the coefficients A, B and C as functions
of n, T and h. Show that the coefficient B of the quadratic term in this
expansion changes sign along the phase boundary of the previous section.
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