
Phy 504 hw 3 solution

March 12, 2013

1 The Boltzmann Transport Equation
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Consider the conservation X(r, p1) + X(r, p2) = X(r, p01) + X(r, p02), as well as the identity
�4(pf � pi) = �4(pi � pf ) and |Tfi|2 = |Tif |2, one can get the collision term as
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The conservation requires X(r, p1) +X(r, p2) = X(r, p01) +X(r, p02) we have
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Apply the i and f exchange for the first term in the bracket and apply i and f , 1 and 2 for the sec-

ond term, apply 1 and 2 for the third term, then the integral becomes �3
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This means
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2. Use the Boltzmann Transport Equation for the result above
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Do some transformations
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Therefore, we can finally get the conservation theorem
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3. The value of X can take mass m or momentum mv or energy 1
2mv2

The Mass: X = m one can get @X/@~r = 0 and @X/@v = 0.
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The momentum: X = mvi: The conservation theorem is
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This can be simplified using
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With the conservation theorem of mass, the momentum conservation can be finally reduced
to
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The Energy: X = 1
2m(~v � ~u)2: The conservation theorem is

@(nE)

@t
+

1

2
m

@

@~r
· hn~v(~v � ~u)2i � 1

2
⇢h~· @

@~r
(~v � ~u)2i � 1

2
nh~F · @

@~v
(~v � ~u)2i � 1

2
h(~v � ~u)2

@

@~v
· F i
(14)

where E(r, t) = 1
2mh(~v � ~u)2i

Define the velocity strain tensor
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After simplification, one can get
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4. Consider f(~r, ~p, t) is a Maxwell-Boltzmann distribution in the form of
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The pressure tensor becomes
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while the heat flux ~q = 0 because of oddity. The conservation theorems become
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2 Random Walks and Di↵usion

1, The Langevin equation describing the overdamped motion of a random walker reads

d~r

dt
= ~⌘(t) (20)

Integrating it over a time step ⌧ , the change of position is

~r(t+ ⌧)� ~r(t) = ⌧~⌘(t) (21)

Then at each time step, the displacement of the random walker is given by the random
displacement ⌧~⌘(t). That means each direction for the hop is equally likely. The hop does not
depend on the history. So we conclude that the integral of Langevin equation leads to the rules
required for a random walk.

2, In d dimension, the probability of moving along aêµ is 1/(2d) because every dimension
has two directions, the probability of finding the random walker at r in N time steps is in the
recursive relation
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X
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The initial condition is P (r, 0, 0) = �r,0
3, From the recursion relation
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This can be written in the form of
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In the continuum limit, we take a ! 0 and ⌧ ! 0, then
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@t
=

a2

2d⌧
r2P (r, 0, t) (24)

The coe�cient is so called the di↵usion constant D = a2

2d⌧
4, The equation in 3 is solvable by Fourier Transforamtion, let
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That has the solution

P̃ (u, t) = e�Dk2t (27)

By inverse Fourier transformation
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For P (~r, 0, N) where N = t/⌧

P (~r, 0, N) = (4⇡DN⌧)�d/2e�r2/(4DN⌧) (29)

P (x, t) here is defined as the first passage time. The total probability for the walker to reach
~r after at most time t is
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5, Take the previously equation and set r = 0 and the integration is from ⌧ ! ⌧ 0. For d = 2
The probability reduces to

P (0, ⌧ 0) = 1� exp

 
� ln ⌧ 0

⌧

4⇡D

!
(31)

This result is quite understandable because if ⌧ = 0, we can 100% certain that the walker reaches
origin because it starts from the origin!

3 Langevin Equation in a Force Field

1, There are several ways to prove, one of which is here:
The particle has equation of motion

mẍ = ⌘(x, t)� �ẋ+ F (x) (32)
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Assume that the system is overdamped so

ẋ =
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The probability distribution P (x, t) of finding the particle at x at time t if it departed from
the origin at t = 0 satisfies
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where hx|T✏(t)|x0i is the prob of the particle going from x0 to x in an infinitesimal time interval
✏. The particle goes from x0 to x at time t in random force
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where F̃ = F/�.
It follows that
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Consider the substitution
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Expanding and keeping terms up to O(✏) gives
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Finally collecting the O(✏) terms gives
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At equilibrium dP/dt = 0, on substitution we get
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The solution is in the form of

Peq / e�2U/(��) (45)

The role of kT is played by 1
2��

3. From the Fokker-Planck equation
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where H = � ~�
2�2r2 + ~(r · F̃ + F̃ ·r)

Express the P (x, t) in terms of a path integral. Divide the time interval t into N equal parts
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Then computing

hxi+1|e�✏H/~|xii = hxi+11� ✏

~H+O(✏2)|xii

=

Z
d3pi

(2⇡~)3 hxi+1|1� ✏

~H+O(✏2)|piihpi|xii

= · · ·

= const⇥ exp


� ✏

2

�2

�
(
1

�
rU � ẋi)
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is the classical action.
4.
When U0 is small, (rU)2 ! 0the action becomes
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and the probability distribution is

P (x, t) = const⇥
Z

Dx exp

✓
�
Z

d⌧


�2

2�
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1

�
r2U ]) (53)

The constant which is independent of U , can be determined by ensuring that the probability
distribution sums to unity

Z
dxP (x, t) = 1 (54)

The di↵erence between the true probability of distirbution P (x, t) and the free walker distri-
bution is
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Take the U = U0e
�r2/(2✏2) then
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The dimensionless quantity is U0/(��)
5, The total probability of being at origin is
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This has a t�1/2 dependence, so it is somewhat like the d = 1 case. The increase of U0 enhances
the exclusion and reduces the probability of returning to origin.

4 Path Integral and the Density Matrix

1, The Hamiltonian of the particle is

H =
p2

2m
+ U(q) (58)

To evaluate the partition function
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Computing
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we find the partition function
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In the limit ✏ ! 0 and N ! 0, this becomes

Z =

Z
Dq exp[�1

~S(q, q̇)] (63)

where the action S is
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Here, the path interal is taken over all paths with q(0) = q(�~), since q0 = qN .
2. In the semiclassical limit ~ ! 0, the path integral is dominated by paths for which the

action is stationary. To find such paths, we take the variation q ! q + �q.
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which gives

mq̈ = U 0(q) (66)

In the low-temperature regime �|U0| >> 1, we have q0 < a, the finite distance for which the
potential is negative. In this region, we can approximate the potential by

U(q) ⇡ U(0) +
1

2
m!2q2 (67)

and so the stationary paths are given by q̈ = !2q. With the boundary condition q(0) = q(�~) =
q0, the solutions are the classical paths

qc(⌧) = q0
cosh [!(⌧ � �~/2)]

cosh [!�~/2] (68)

8



Such paths give the classical action

Sc(q, q̇) =
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So the partition function is
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To evaluate the partition function

Z = tre��H

=

Z
d3qhq|e��H|qi (71)

we divide �~ into N infinitesimal parts of length ✏ and write

hq|e��H|qi =
Z  N�1Y

i=1

dqi

! 
N�1Y
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hqi+1|e�✏H/~|qi
!

(72)

where q0 = qN = q. Computing

hqi+1|e�✏H/~|qii = hi+1|1� ✏

~H+O(✏2)|qi|qii

⇡ hqi+1|1� ✏

~ [
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2m
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=
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2
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Therefore, the partition function is
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In the limit ✏ ! 0 and N ! 1, this becomes

Z =

Z
Dq exp[�1

~S(q, q̇)] (75)

where the action S is

S(q, q̇) =

Z �~

0
d⌧ [

1

2
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Here, the path integral is taken over all paths with q(0) = q(�~), since q0 = qN .
the partitition function is

Z =

Z
Dq exp[�1

~Sc(q, q̇)]

=
1

(2 sinh(�~!/2))3 exp(��U(0)) (77)

3, The free energy is

F = �kT lnZ

= U(0) + 3kT ln(2 sinh(�~!/2)) (78)

The partition function of a three dimensional harmonic oscillator at T is

Zh.o =
1

(2 sinh(�~!/2))3 (79)

Therefore it has free energy

Fh.o = 3kT ln(2 sinh(�~!/2)) (80)

Therefore, the free energy of the system in the low temperature regime is the same as that of a
three dimensional oscillator shifted by U(0).
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