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1 The Mayer Linked Cluster Expansion

1, The Grand Canonical Ensemble is
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For pairwise interaction U(r
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For a given term in the series, let n
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is the number of times terms with {n
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Hence from
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we see that the pressure written as a series expansion in powers of z has contribution only
from the linked diagrams.
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4,
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Therefore insert P here
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The exponential functions are analytic, so are the products of exponentials eaeb = e
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analytic in z. Furthermore, the exponential function e

↵x has no zeros for x > 0, provided that
↵ > 0
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which means that the pressure is monotonically increasing with respect to z. SImilary
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So 1/v is also monotonically increasing function of z.
6, We know
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2 Statistical Mechanics of a Lattice Gas

1 The grand partition function
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where Z
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is the canonical partition function. Consider the M ⇥M lattice by summing over the
position (n,m) for each particle 1 · · ·N of the gas and by summing over the pairs to account for
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Each term can be represented by a graph with N points in the following way
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that no two particles are on the same site.
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Figure 1: The calculation of b3 and b4
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This is similar to the interacting gas example, so
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This was determined by taking the lattice spacing a0 and dividing it by the specific volume.
It does not depend on the de Broglie wavelength because this system is not governed by quantum
mechanics and no kinetic energy considered with the translational DOF.
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