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1. Introduction

The electronic properties of an amorphous metal are very complex. In
general the local electrostatic potential felt by the electrons can be
approximated by a random variable. The basic assumption is that one is
looking at a scale in which the system is homogeneous. In such a system
the properties of the one-particle states depend on the relative size of
the width of the distribution of electrostatic potentials w to the matrix
element ¢ for electronic hopping a typical microscopic distance a,. In
1958 Andrson [1] considered such a problem. His line of thought was (I
think!) as follows. In the limit where w < ¢ we have a weakly disordered
metal. It is clear that if the Fermi energy Eg is sufficiently far away fram
the edges, the one-particle state with energy Ep should be extended
(ie. |Y(x)* — constant)
XX

and the system should conduct. On the other hand if w > ¢, the kinetic
energy term is a perturbation and the electron is trapped in the deep
valleys of the random electrostatic potential ¥ (x). To any finite order p
in a perturbative expansion in t/w, the electron will be able to propagate
up to a distance of the order pa,/2. If this expansion has a finite radius
of convergence then all the eigenstates of the system should be localized.
Of course his analysis was more involved than this but the argument is
essentially the one given before. He then concluded that there should be
a critical value of w/t beyond which all states should be localized. For
w/t < 1 we have [ |y|*> = o while

J|\/42< o for %» 1.

The nature of the transition at (w/t),;.. Temained a mystery for very
many years. Mott proposed that the transition at the mobility edge E, (the
energy that separates extended from localized states for w/t < (W/t)eiicar)
should be first order and the conductivity ¢ would vanish
discontinuously at E_ [2, 3]. The other alternative is that the transition is
continuous and that the conductivity should vanish continuously as one
crosses the mobility edge. The transition is second order. In such case
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there shouid exist a length scale with diverges at the mobility edge. In
fact for w/t > 1, or alternatively deep in the tail of the density of states

Fifasd £ +h
(see the lectures of G. Parisi in these Proceedings), the amplitude of the

wave function of a localized state decays exponentially with the distance

with a typical scale £, the localization length. If the transition is second

1 A A o0 Anmtieaziaa
order then ¢ should diverge at the mobility edge and a continuum,

universal, description of the transition should be possible. It has been
argued by Anderson himsclf, by Thouless [4], Wegner [5] and bv

o £1 ¢ thna looct o
Abrahams et al. {UJ tnat the iast a

ternative is the correct one.

It is not my purpose to give a comprehensive review on localization

rhegrv Thgrg are a number of excellent reviews }H the htnrat'u re. See for

by Mc . Kane and btone |_9]

Instead I will describe the basic ideas of the scaling theory of
localization and discuss how should these ideas be modified in order to
include interaction effects in a consistent fashion.

Why is localization theory difficult? The main reason is that this is a
theory in which several scales are present and this renders

stralghtforward perturbation theory around a perfect metal useless. We
1 r
i

have the situation shown in the diagram of fig. 1
¢ + +
3 t 3
Lattice Mean Localization
spating free tength
path

Fig. 1. Scales in a disordered electronic system.

The first scale, aq, is simply the interatomic spacing. The second scale,
I (the mean free path), is the scale at which the electron looses memory
of the phase of its wave function. Finally there is the localization length
that controls the decay of the amplitude of the wave function. The
problem with perturbation theory around a pure metallic state is that
the only thing it can do is to provide for a mean free path. In terms of
Feynman diagrams we have, for the one-particle Green’s function,
(G.F.), the diagrammatic expansion shown in fig. 2.
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Fig. 2. The one-particle Green's function.

This is nothing but the Born series. Here the crosses represent the
action of an impurity or of the random potential V(x). The random

potential V(x) is generally assumed to be a set of random gaussian
variables independently distributed:

Vix)=0, V(x)V()=W33x—y) (1)
The averaged G.F. is then calculated by tying up to crosses (fig. 3)
,//x\\ 7oA, e, Ko
. SN . AN o LNEN
xE yE
P L
/ N
+ _L__'_)__'—— £ reeenr
\‘ i
\\xx,’ d

Fig. 3. The averaged one-particle Green’s function.

Note that since the scattering is elastic the energy label of the line
does not change. Each solid line is a bare electronic propagator

1
Gix—y,E) = x| ————— |- 2
(x—y,E) =<l ~—A+V(x)—EU> (2)
Each broken line represents an impurity average V(x)V'(y). Thus the
leading contribution to the self-energy is given by the one-particle

IVAUIIIE WA RiLAAU e aR

irreducible graph of fig. 4.

Fig. 4. Leading contribution to the self-encrgy.

The main effect of this graph is to give a finite imaginary part to the
self energy of the clectron. There is a momentum independent, generally
divergent, contribution to the real part but it can be cancelled by a
suitable redefinition of the chemical potential. I will drop from now on

all momentum independent real contributions to the self energy 2.
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2.1. The N-orbital model

One can make this calculation self-consistent by summing up the set of
rainbow graphs of fig. 5.
SR~ P
,’x‘\\ 7T XNN ///,-X\‘\\
!/ - o \ 4 P2 AN -

Fig. 5. Summing rainbow graphs.

This is precisel\' what the Coherent Potential Approximation (CPA).
mentioned in Parisi's lectures (this Volume). does. This approximation
can be made exact by considering the N-orbital mode! introduced by
Wegner [10] and studied by Oppermann and Wegner [11] in the I'N
expansion. In this model there are N species of electrons. labelled by an
index == 1...... N. The random potential F'(x) is now I 4(x) with the

following properties

I0x) = 0.

VX)) = Mo(x—y10,.055~0,;05.) (V real). (3)

It is easy to see that all the rainbow graphs are of the same order in N,
Hence N — ¥ reproduces the CPA theory [10].

The Hamiltonian of the system. in the formulation of second
quantization. is {including interaction terms)

H = | d ¢S (x)— S (xWry(x)

¥ '\ e 1

+ (dd.\- ‘d“_\-% WX, (0L (x =y Wy W, (x ).
AX)LYi(x)) = 0,,0(x—x). (4)

In this lecture we consider first g = 0. In the next lectures we will
discuss the new features that appear for g = 0 when U is a short-ranged
instantaneous interaction.

2.1.1. The N = x [imit

In this model it is useful to consider the two electron-electron scatterings
(induced by impurity averaging). indicated in eq. (3). as conceptually
different. This is shown in fig. 6. With these definitions the graphs of fig.
5 can be written in the way shown in fig. 7. Clearly an insertion with a
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Fig. 7. The rainbow graphs again

as s

Fi/ N

Fig. 8. The insertion of a circle.

circle is down by one power of N™' as shown in fig. 8. Thus the CPA
theory follows at N = x and we can write for the averaged one-particle
GF
G {(x.y:E)= Gy(x,v:E)
+M J(d: Golx, 2 EYG , (z.2: EYG (z. v E). {5)
In momentum space we find
d‘p 1
JEy=M . (6)
‘ (@ G (p.E)-2(E)
where G 1(p, E) = G5 !(p, E)— Z(E).
If we neglect the contribution to the real part (something we can do if
we are far away from band edges) one immediately finds thm eq. (6)

implies

T =nMp (Ep)= 172t (E>0) (7)
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where p, (Eg) is the density of states of the system at the Fermi surface.
We can then write the one-particle averaged GF in the form

.sgn (w)
G p.w) = (o—Eyp)+u)+i »7r . (8)

where t is the life-time (mean free time) and it is equal to
1 = 2np (Ex)M.

u is the chemical potential and
Eolp) = p>2m (m = 1)

The presence of a finite mean free time t implies that the GF decays
exponentially with the separation [12]. Thus the electron loses memory
of the phase of its wave function for distances bigger than vyt = [ (mean
free path).

Are there any localization effects in this theory? We can check that this
is nor the case by considering the two-particle Green's function
K pp(xx:yvy. E+ie. E+—ie). The interest of this two-particle Green's
function stems from the fact that it gives the conductivity, through the
Kubo formula (see Abrahams’ lectures in ref. 8). Another motivation for
the study of K is that being the square of a GF (when g = 0!) the phase
averaging effects are expected to drop out. If the system is a conductor
we do not expect an exponential decay in K. Note that the ie convention
implies that E < 0 and E+® > 0.

If we denote the connected part of K by K. one finds that the
conductivity o is related to K through [10]

2 &
D.E) = —5— Y = K,z,(q. E.
o(w. E) = Zﬁ o Ko (q. E.E+w) 9)

At N = x only ladders of impurity averages contribute to K,,,, (fig. 9).
Summing up all these graphs one finds

A‘M 1

el E+w By = — ——— . ; 10
el E+ 0. E) = o D Tl (E+o>0.E<0) (10)
e B
= o B

x M T + % x % + =

f b b
_u i B L i |

Fig. 9. The diagrams for the two-particle Green's function at N = =,
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tn

where D is the diffusion constant at N = =
D =it d (11)

Formula (10). together with the Einstein equation
e’ . 5
g =— N(E\D. (12)
h
implies a finite conductivity. We then conclude that at least away from
band edges all states are extended.
It is instructive to repeat the same calculation for E>0and E+® > 0
(the same result applies when both are negative). In this case the result is
quite different

M
Kislq E+o E) = = +finite terms. (E > 0. E+ o > 0). (13)

The finite terms are set to zero in our approximation. The graphs that
contribute to K™~ are the same ones that contribute to K~ ~. The
energy range is different.

Eg. (10) suggests the presence of a Goldstone mode in the theory
(Wegner. in ref. 8). In fact using egs. (7} and (10) one can write (at
q=0)

pv,(EF)

. (14)
— 1!

K 35:00. E+ . E) ~ constant
and K™~ blows up as joi — 0 so far as p,(E,) is finite. Wegner went
further and tried to draw a parallel with the behavior of ferromagnetic
systems with a continuous symmetry group in its broken phase. In his
picture K~ behaves like the transverse susceptibility. p, (Ep) as the
order parameter and —ijw| is the symmetry breaking field. Using a
replica method he found that the Goldstone-like behavior is a
consequence of the Ward identity [8. 10]

Gulr.r.Z) =G ,tr.v. Z)

Y Kool ¥ ZIF. 1. Z') = -2

r g

(15)

where ImZ > 0 and ImZ’ < 0.

To go beyond these results one has to consider the next order in N~ 1.
This task was done by Oppermann and Wegner. The results however
scem to have a wider applicability than that. Many authors have
considered a loop expansion around a weakly disordered metal and
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found results which are consistent with the N ! expansion if the theory

| § 72 MR als 3
wuy mummauzation" It turns out that the theory

1S, These mfrared divergent contributions are present

JREE TP Ama_nartinla ++
y odc but not in the one-particle GF or in the K
mode. These simplifying facts™ will turn out to be a property only of

the non-interacting theory

2.1.2. N~! corrections

The infrared divergent contributions to Kz, to leading order i
are shown in fig. 10. We denote the sum shown in fig. 9 by a shaded

00X
IR/ R 77/ T | ,l G55 I A B R I 0
, / Wz Vaid 1 L Cead
- N2

Fig. 10. N~! corrections to the diffusive mode.

The result is (in two dimensions)

T M N IR SRS S O
= N 7Dg’—ilw)) Da’—ijw|| ~ 2n 2mp,D 1 “DAZJ’

where A is a cutoff in momentum transfer. This result seems to indicate
that if one renormalizes the diffusion constant D {(or rather 1/2npD) the
theory can be made finite. A little dimensional analysis reveals that the
variable x = 1/2npD is dimensionless in d = 2 and scales like

.. d—2
[x]=07" (17

(In a d-dimensional Heisenberg (¢) model T~ scales like [/~ 2) It is
precisely this scaling behavior, first observed by Thouless [4], who led
Abrahams et al. [6] to the conclusion that there is no dc conductivity in
two dimensions. Using the replica method Wegner conjectured that
localization near two dimensions is in the same universality class as a
generalized matrix non-linear sigma model. At the time the nature of the
symmetry was unclear. Parisi [13] suggested that the symmetry group
was

On.,n_)
O(n, ) xOn_)



536 E. Fradkin

in the limit (1_.n_)— 0. This result has been later rederived by a
number of authors [9. 14, 13]. For our purposes I will follow the work
of Hikami [15].

Consider the interaction of 4 diffusive modes shown in fig. 11. The
result is the (“one-particle irreducible”) vertex

I = —4np, De*N[20q, 4.+ 427930~ (g3 7421 (4 7 44)]- (18)

where T have set all frequency differences to zero. Note the absence of
momentum independent vertices. There is also a six-point vertex shown
in the fig. 12. Note also that diagrams of the type shown in fig. 13 are
zero.

Fig. 13. A diagram which is absent.

2.2. The non-linear sigma-model

One can reproduce all these diagrammatic rules by introducing a field
¢(x) which takes values on a symmetric space (the coset space G/H
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17y Tl
1

between a Lic group and its maximum compact subgroup H). ine
Hamiltonian is

H=1|dxtrég g, (19)

For our case the space is
O(n:.n,)
Om_1x0Om_)’
The field ¢ has the form
.. G- -}
= . (20)
¢ [dt e

clearly ¢._ (¢_.) corresponds to the diffusive mode K, . and [ I
{¢_ ) goes into K.. (K__). The matrix elements ¢._ (¢__) are
proportional to ip(Eg) (—ip(Eg)). Thus ¢ has the property

i1
o ~ om0 ™ o -
L i
and ¢*(x) = —constant x (p(Eg))*.

If the density of states is constant one has a matrix model with a ron-
linear hyperbolic constraint. This hyperbolic constraint indicates a non-
compact symmetry

O(n,.n_)
O{n, )y xO0wm_)
rather than its compact version
Om. +n_)
Om.)xOm_)’
If the ¢ fields are parametrized as
igx+0Q""* Q
X)= . ; 22
¢(\) [ QT —l(%X"!’QTQ)l 2 ( )
In terms of the Q's and expanding up to second order it is found that
(9]
H = ddx [%(‘:uQ(‘:uQT —%xQzan}b 6uQ1b 6uQBa

v

- %mesz (:uQﬂa EuQﬂb - %xQzaQﬁa 6uQ:zb 6uQﬂb + O(XZ )] (23)
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In the limit (n,.n_)— 0 the perturbative rules are satisfied. A
renormalization group analysis to the order of two loops (1/N? in our
terms) shows that, in the limit n — 0 the wave function renormalization
of ¢ is trivial (Z = 1) and that only a renormalization of the coupling
constant is necessary. The B-function of x is, in 2 +& dimensions,

Aéx x? 1
= — = —&xX+ —— — 1, 24
B. A ax+nN +0+O<N3> (24)

where x = xgZ A% ¢ = d -2,

DU S L
~ ' 2nN2mpD DA

(I hold x, fixed, A is the momentum transfer cut off; x dimensionless.)
Eq. (24) reveals that at d = 2 (¢ = 0) there is only an infrared unstable
fixed point at x =0 (D = x). No matter how low the level of the
disorder is, the system always iterates to the strongly disordered limit
where all states are localized. This result was first obtained by Abrahams
et al. [6]. All states are localized provided that no other fixed points
exist. This seems to be the case though there is still some controversy
concerning numerical results. '

Zp

-~ 2.3. Scaling

In 2+¢ there is an infrared stable fixed point at x = 0. The infrared
unstable fixed point is sitting at x* = nNe. This is the critical fixed
point. The flows are shown in fig. 14.

X

< *
o €t > >

Fig. 14. The infrared flows of the non-interacting theory.

For x < x* the infrared flows iterate towards x = 0. The system is a
conductor. For x > x* the flows iterate to large x where the system'is an
insulator. All states are localized.

At x* there is a transition and scale invariance. The localization
length diverges. As the fixed point is approached from the localized side,
the localization length diverges like & ~ |[x—x*|~*. The exponent v is
found to be equal to 1/e. These results were first proposed by Wegner on
the basis of scaling arguments [5]. On the other hand we can integrate
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the RG equation
Cx cx
T 7t JinL A

in the metallic phase x < x* The result is

*ody
L = Lo {J‘m E{T)}

with x = xtL) and xo = x(Ly).
Hence

x\ M rNe—x,
L=Lis)

aNe

=1 &

for x < nNe = x* and x, x x*. Therefore

Lo\ inNe—xg |7t
x(L) ~ nNg (-—O) i) B
MLy = Ve 1

Recall the definition of x = 1 2npD

D >~ constant x I TNE X L
- >~ cons x| ———| = 0oL,
P nNe '
i "
nNe—X, Ey.—E,
c=A|—— x4 |—
! nNe b E,

if we assume that the bare density of states is smooth.
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(26)

27

(29)

(30)

Thus the conductivity vanishes linearly at the edge (O(e)). One further
aspect of the non-interacting theory is the triviality of the wave-function
renormalization. From the point of view of the o-model analogy we
know that the wave function renormalization originates from terms that
contain internal loops of the ¢ field. These terms are suppressed in the
(n,.n_)— 0 limit. Thus Z, must be one. We are going to see that this
result does not apply to the interacting theory. By the way, the triviality
of Z, implies that the exponent n = 2—d. This result is consistent with
the fact that the ~order parameter” of this theory p(Eg) is smooth as E¢
crosses E.. The exponent f§ equals zero and the result = 2—d follows

through.
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Many of the results explained before are modified once interactions
the picture. I will follow my general sirategy and study. first.
the N = « limit of the full theory.

I argued in the previous lecture that the N = ¥ limit. even though it
is In a sense a trivial theor_\ is a good starting point for a perturbative
expansion. This feature is also present in the interacting case.

n

Let me first make a few comments on the nature of the interaction. I
assume the electrons to be spinless. or rather that Spm play no role in
the problem. This is clearly an ovrsimpiiﬁcanon. There are many cases
i which the role of the spin is crucial (e.g. the Hubbard model. etc.). I
also assume the interparticle potential to be short-ranged. More
precisely

d An e L
o Lttt r U

where /45 ' is the range of the interaction. This is also not true in real
systems in which the interactions are the repulsive Coulomb forces.
There are a number of technical difficulties that appear in the presence
of long-range forces. I will show that even this model system has a
structure which is already complicated. The N = x limit that I am
about to describe reproduces the standard Hartree approximation for
the one-particle Green's function.

3.1. The N = x limit

w do ¢ Dyson equation, discussed in the previous lecture. get
modified if gy = 07 In principle many more diagrams appear. Some of
them are shown in fig. 15.

ow does th

O O O O

T O U

{a) {b) {c)

Fig. 15 Interaction corrections to the electron self-energy.
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In these graphs the lines represent N = i propagators with g = 0.
The graphs (15.a) and (15.b) are typical tadpole insertions. Their sum
produces the standard Hartree approximation. In this system they
produce a correction to the self-energy which is real. momentum
independent and diagonal in the orbital indices. Thus their effect can be
compensated by afurther shift in the chemical potential. In other models
in which a metal-insulator transition is produced by spin dependent
forces (like the Hubbard model} these terms play a very important role.

Finally we have to analyze diagram (15c). This diagram has a purely
real momentum independent Contrlbutlon which is set to zero by our

procedure of computing integrals. Its contribution to X is
dd
0X = iMgU(Om [- 5 1 G p~q.0)G(p—q.m) {32)
X iMgUOmplEg) ( de [GTte.on]* = 0. (33)

where n is the particle density. X vanishes since both poles are in the
upper half complex energy plane. Therefore for energies near Ep the
average one-particle Green's function is the same as in the non-
interacting case {at N = x!).

We now have to compute the diffusive modes. It is not hard to see
that any interaction insertion is down by one power in N~ ! (fig. 16).
Thus the K™~ and K** modes remain the same as for g = 0. The
Goldstone behavior of K™~ is not modified.

Let us now consider the vertex shown in fig. 17. It obeys the “integral
equation”

g.w) = I+M[ G, (k+q.0+EG (k. E)} = (34)
vk

~1/N2

[TV S

Fig. 16. An interaction correction.
+ E+0P+q.a

Fig. 17. The (+~ —) vertex at N =

~

P 2N
LXK~

>,_ _______

- EP.a
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The solution is
rz_=1. 135y

1
{Dg= —iimi)

2x

P
{

We can see that the Goldstone behavior of K™~ produces diffusive
behavior in I'™ ™ itself. This result is going to play a very important role.

Finally let us consider the effective interaction at N = . In this limit
the only diagrams that survive are those with an arbitrary number of
electron loops (bubbles). Note by the way that one of the vertices inside
the bubble must be the full ¥ = =« vertex. See fig. 18.

= — O~ @ oo~
Fig. 18. The effective interaction at N = .

The effective potential 4, (p. ) at N = = is then seen to satisfy the
Dyson equation

U7 (p.w) = Uip.oy+gUl(p. oMI \p. 0V (p.®) {36}
with the polarization bubble I1, (p. ») equal to
.1 dQ [ dig
I, (p.) = —1‘ 72?‘ oy G, ip+q.o0+0)G, (q.2)
x I (q.0+Q.Q). {37)
The result for [T, is
D 2
I (p.ow)= —p,(EF)——T—t,f—. (38)
Dp* —ijw|
If we combine IT, with %, (p.w)
A7 p.w)=U"Yp.ow)—1,(p.w) (39)
we find
1 Dp* —ile
X, (p.0) == Pl (40)

22 Dp? —ilw|sd 22

5

in the limit {p. ) small. Here /7 = /J+gp. (Eg.
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=

Eq. (40) shows a remarkabie change in the form of me potential. 1
the static limit (o — 0. p finite) we get 4, (p.0} ~ 1 22, that is static
ite limit (p — 0. o finite) (dynamic) #, ~ 1 /5
is

screen fg In the Opposi Y
seen. The corrections to these limits will play

and the bare interaction
a role in the theory.
This completes the discussion of the properties of the model at
N = . We see that we get a system with the expected properties of a
weakly disordered metal (finite lifetime 1. screening. diffusion etc.). Thus

4

the interactions of the type we have consider do not alter the metallic
properties of the non-interacting system so far as .V = . We are going
to find rather dramatic effects in the N ™' corrections.

The rules that define the N ! expansion are now very simple. All lines
represent G, propagators. Wavy lines represent the full N = = effective
interaction /2/ ,. The vertices must be dressed according to the rules

already explained: the (+ —) vertex (which couples a diffusive mode to

an interaction line) must be dressed with a ladder of impurity lines with
a cross in each while the + + vertex {and the — —) is not dressed at
N = x. We then combine all these ingredients taking care of the N
depen d ce of the graph.

3.2, N~ corrections

3.2.1. N7 corrections to the electron propagator

To make a long story short I will only quote the contributions which
give rise to infrared divergencies in two dimensions (fig. 19).

(a) (b}

Fig. 19. The N ™! corrections to the electron self-energy. The double wavy lines represent
the effective interaction at N =

There are other contributions to the self-energy but they are infrared
finite. Note that the internal integration range has been restricted to
¢ < w < E_. The other range (v < ¢) gives only a finite contribution.
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The contribution of graph (18.a) is equal to

-

AN Dm0 2m [ DRT—ijoing 27
! 1 YG (p—k.E—w©) (41)
x|{-—— |G (p—k E-w)
(\T Dk- —1iw: P @

This graph was first considered by Altshuler et al. [16]. In eq. (41) I have
introduced an ultraviolet cutoff in the energy integral (E.). By
dimensional analysis we can set E, = D.1=.

An evaluation of the integrals. in the limit jpi X pg and E - 0. vields
the result

. g I i) [ E
02 :‘—_—;‘aG_ EY s —-In—
* Nt » 8n°D (25 ~-—1) ( Ec>
ig E. Gp.E)| P E/ E
T NP p B 1e={Im=—1}it
* N:*t* 8n°D  2mD { T om (p‘ )[ EC(HEc
+finite terms. (42)

The contribution of graph (19.b) is equal to

[ dg

3, =M !
b ] (27”-

G (p—4q-EV¥Z,(p—9q.E) (43)

Evaluating the integrals explicitly one finds
i 2 E
- In=In—. 44
8n-NpDt n Vi "E el

N

8z, =

Collecting the results from 6%, and 62, we find that. to order N™',
G '(p.E) is equal to

_ 1/ 1 pg__ Ini2i3 Spg.._ E ]
! L E) = o —r 5 e = = In—
R B E[l N (2npD>( iy 2Riag—1 ML nEc

I 1 pg._ Initig E
—(E - l— — —— o s I
(Eolp) #)[ N 2npD 23 (/.2/:’/.5-— ) 0 E.

+i— 1~—1 ! £ - m,l,g ln£ .
2% 2N 2pnD 2 iiis—1  E.

(45)

In eq. (45) 1 have set the coupling constant g to be equal to g, _
(equal t0 g, ., =g__ at N = x) anticipating the result that g,  and
g- _ renormalize differently. I will come back to this point later.
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It is apparent from eq. (4 hat G™' needs a number of
renormalizations. Obviously a wave-function renormalization of the

Fermi field ¥ is necessary since

¢G™ el = 1

(in fact it diverges logarithmically in this model with short-ranged
interactions). It is also necessary to do a renormalization of both the

Fermi velocity and of the life-time 7. This is true because we have kept
diagram (19.b). In an expansion in powers of 1 kgl this diagram would
not contribute. even though it has the same degree of infrared divergence
as (19.a). It is an important feature of the N ! expansion that all

diagrams with the same order of divergence are also of the same order in
N™L

3.2.2. N1 corrections for vertices and the diffusive mode

Yo

Before we can renormalize this theory
contributions to the other vertices and propagators.

It is outside the purpose of these lectures to give a description too
detailed of the calculation. Instead I will give the highlights of it. In
addition to the contributions already discussed. for the two-point
functions, there are non-trivial contributions to essentially all quantities.

In this way the contributions that one finds for the diffysive modes
K, imply that not only it is necessary to renormalize the diffusion
constant {as we did in the non-interacting case) but, in addition. the

diffusive modes acquire an extra wave function renormalization. Typical
infrared divergent graphs are shown in fig. 20.

//’x‘ ~

* - Py
. A

FX
+ '.i. + L Other graphs

Fig. 20. Interaction dependent N ™' correction to the diffusive mode.

The vertex functions, shown in fig. 17. also acquire non-trivial
contributions. Firstly let me note that '™ and I'"~ renormalize
differently. Hence the need for two separate coupling constants g.. and
g._. The wvertex function I'"7 has logarithmically divergent
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contributions which can be absorbed in a renormalizativn of g._. The
vertex I~ ~ {and I'" ") also has a logarithmically divergent ¢ ontribution.
which can be cancelled by a suitable renormalization of g_ .. However.
I~ has a new term. to order N~ '. which is cut-off independent and

!

diverges like Q' as @ —» 0. Thus I'™~ acquires a “diffusive component”
1o ordp N ! The origin of this term is consistent with the Ward
identity

I ~aG™ "' Q. (46)
Since G~ has terms that diverge like In (@] D.17) (see eq. (45)) eq. (46)
1mpues the presenw Ol 1§ terms.

Finally the effective mteracnon ¥ has divergent contributions. This
contribution can be cancelled. part. by the renormalization of the
diffusion constant. However t‘ms is not the end of the story. In the
dynamic regime (D¢ < o) /'/ has the form

1 Na- j
i 3 7 i oA -
W, x| 1———v+... |. (47)
75 i
where
-0
/'— 1 % A
v=—=—1 atN=1x.
%0

The additional divergences can be now cancelled provided one

renormalizes v.
There is one point that needs some discussion at this point. The

polarization operator I1. at N = . has the form
D 2
M, = —p,Ep) —rs (381
i —1Q+Dqg”

One might wonder why. instead of renormalizing o€
renormalize [T, multiplicatively by rescaling p (Eg). ln fact 5uch
procedure has ‘been proposed by McMillan [17]. This procedure.
however intuitive, is not correct. One can show, using particle
conservation, that the p, in I is equal to ¢n/Cu, where n is the physical
particle density and u the chemical potential, rather that the physical
one particle density of states. Therefore the coefficient in front of iI
remains equal to p, and does not acquire renormalization. The same
observation applies for the p, which enters multiplying D.
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3.3. Renormalization

We begin our discussion of renormalization by doing some dimensional
analysis. In my first lecture 1 argued that the parameter x which equals
1 2np, D. scales naively like 1472 where L is a length. Of course this is
still true in the interacting theory. I will argue not that there are two
parameters ) = pg_ - 45 and = = pg_ /2 which are dimensionless in
all dimensions. In this system the field ¢ has dimension of 742 the
energy is T~'. the mass m is TL? and both g's have dimension
[4-2T-1 where T has dimensions of time. Since the density of states p
has dimension L “T it follows immediately that [x]= L2
Ml=[1=1

We want now to renormalize this expansion while keeping the
physics of N = x invariant. This procedure is equivalent to require the
metallic phase to be stable.

I will adopt the following set of renormalization conditions

1
Im Gg 'lg=0.p =P, = 5. (48a)
_LR
¢ _
—E—E‘ Re GR 1‘£=0_.1p =P, = 1. (48b)
¢ -
T AP Re Gy 'lg=o.pi=p, = - (48¢)

where 1z and t} are the (renormalized) mean-free time and Fermi
velocity respectively.
I introduce now the renormalization constants Z,. Z. and Z,..

Gil=2,G5' (49a)
=122, " (49b)
R =12, 2, {49¢)

In the same manner the diffusive mode K™~ can be renormalized.

M ¢ )

2Kyt = —i (50a)
Tg €Q

M ki-y'=D 50b
TR 5(12 R = &R ( )

where Dy is the renormalized diffusion constant. Two renormalization
constants are necessary to make K~ ~ finite. Zy and Zp,
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K =Z.Z2,Z,'Kg". (51a)
xg = XZiZG Zp AT (51b)

where we have made x = | 2npD dimensionless in all dimensions by
pulling out its naive dimension .1° Alternatively we could have scaled it

by E;° 7.
The coupling constants ¥ = pg__ /3 and = = pg . A? can also be
multiplicatively renormalized
vg = vZIZ7N ' (52a)
m=CZZZGN V2 {52b)

Eq. (52b) shows explicitly that the renormalization of the diffusive mode
affects that of the I'"~ vertex. This is entirely natural since g. .
measures the strength of the coupling between the diffusive mode K™~
and the interaction line # .

Finally the “screening parameter” v is renormalized

e =VvZp'Z (53)

All these renormalization constants are sufficient to render the theory
finite to order 1 N. To the next order in 1 . at least one more constant
is necessary. to cancel the divergences of the coefficient of the 1 Q term
in the I~ vertex. It remains an open question io prove that the theory
is renormalizable to all orders in N 7'

3.3.1. The renormalization group equations

I will not present the complete expressions of the renormalization
constants and the beta functions since they are rather complicated.
Instead I will present the beta-functions directly in the Hmit v small. In
this limit the equations simplify considerably. This will turn out to be
sufficient since v is found to be irrelevant at the critical fixed point. In
this limit one finds the following beta-functions.

éx ex  x° X%y X%z
= —F — =~ e —— f ——, (54
b GE T2 TN TN T an (>4a)
cy ) o0 3 —
- _F o= 4 —— X} XL (54b)
by Eetm E, 2N T 2N VY
. é: 3000 4k I (5dc:

5. = —E. —= - NVI T -,—:-?G\, V.

~F =N o
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Oy YN g At
= —E —/—=——|3yv—c--2_ 54d
& “FE. T Iant N S
It is more convenient to make a change of variables. A look into the
perturbative expressions shown in the last lecture suggests that w = xy
and ¥ = x- are the natural variables
Define s = —In(E. Q). where Q is a frequency scale. The S-functions
for x. u and w are
dx ex X7 Xw Xu
U= S —. (55a)
ds 2 2aN  2aN  4nN
du &u i Xy 4 Tuw 17w’ , = (55b)
o — — -+ -+ —— oUW, J
ds 2 2aN 22N 4nN  aND
dw ew  uw XwW w? 3 —— (55
iy ey -4 -+ - 4 W U C
ds 2 4N " 2N 2aN 0 2N D )

These RG equations have to be integrated with the initial condition
u = w since at the unperturbed level g, _ =g, . =g.

As usual we first discuss the fixed point structure. We consider first

(i) Trivial FP: If ¢ > 0 (d > 2) then the origin is a trivial. infrared
stable fixed point

(ii) Anderson fixed point: This is the critical FP of the non-interacting
theory. It turns out that there is a whole line of unstable fixed points in
the plane u =0 ranging from the Anderson fixed point (x* = nNg,
u = w = 0) to the point w* = nNe, x =u = 0.

Critical
surface

Fig. 21. The RG flows.
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th

(i} Non-trivial fixed point: w = x = 0. u* = 2zNe 17. This fixed
point is critical. Has a relevant eigenvalue of —¢& 2 along the direction of
the u axis and two irrelevant directions with eigenvalues —8z 17 and
—9: 17.

The qualitative flows are shown in fig. 21.

From this analysis we can already conclude two things. Firstly that
the Anderson fixed point is unstable. On the other hand there is a
nontrivial fixed point at u* = 2zNel17. x =w =0 with relevant
eigenvalue equal to ¢ 2. Note that. in terms of the coupling constant g _
this is an infinite fixed point. since it requires x -0 and ¢g._ — %
simultaneously. This is a consequence of the fact that the interaction is
too simple. In more complex cases this fixed point is expected to be
finite. The exponent v of the localization length. as well as that of the
conductivity. does not change since the eigenvalue at the non-trivial FP
is the same one we found for the non interacting case (please note that I
am scaling with energies now!)

3.3.2. Density of states
Let us discuss now the behavior of the density of states. The

renormalized density of states Vi can be extracted from the Green's
function

i 1 1 7 adp
1 tode 1
== Im | S5 —— . (56)
T D2 E—Eg(p)+pg +1 21y

Thus the renormalized density of states and the bare density of states are
related by

Ny = 2o N (57)

Using the expression

R VAV {49¢)
we find
Np = NyZ;Z, )" " (58)

If we define Z to be
Ey= E32, V" (59)
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N |
4014
l".‘
¢
N T _‘Ec In Z'\'
i - iz
CE,
ham T it
then I can write the renormalization group equation
C C ¢ ¢
E. T —ﬂu 3 B.. =, —Bs -
CL, Cu i

N

: (60)
: A

It is easy to solve (eq. (60)) at the Fixed Point

= 2nNe

7 w=x = 0.

Alternatively we may be interested in tl
density of states at the FP

D L, o Y oy oo
acpenacice ol e
¢ aln
LEC e~k [ Np=0 (61)
<
= A\'H(.EC)EC_ V= L\TB(/"_C)(/._EC)' i (62)
where
t= —E. Sz e 63
N=—E - In = (63)
N < EC nlFP 17
We then want to find the frequency dependence. By dimensional analysis
we know that
NgtQ 2 E) = Ny(Q.2E,). (64)
Using eq. (62) we get
NptQ i E,) = 2N E,). (65)
Choosing » = Q'Q* we find
NHQ E) = (Q Q%) ENGQ* E,)

exponent § = —3% = Tg 17

(66)
We conclude that at the Fixed Point. and along the whole separatrix.
the density of states vanishes as the Fermi surface is approached with an
N Q. E) ~ (QQ*) et

(67)
A similar analysis yields the critical exponent for N(Eg). the density of
states at the Fermi surface. as the critical point is approached.

551
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W

The renormalization group equation

¢ ¢
E S f — = Ny=0
{: < (~E: :Bu (:“ :_\] B (68)

can be solved along the relevant trajectory. The result is

NB(4) = constant - _§i'? 1T 169)
where
lug—u*!

4 =1
T

is the distance to the separatrix.

3.3.3. The exponent n

Finally 1 want to describe very briefly the issue of the anomalous

dimension #» of the diffusive mode K~ . Recall the renormalization of
K-
Ki =Z7Z.Z,2;'Ky . (70)
We can define an anomalous dimension %
(?.
<% = E —— In Zglep. 71
‘K * ZE. xlep (71

By a standard argument we find that the exponent # 1s
n= k=¢l7 (72)

I want to end these lectures with a few comments. What 1 have
described to you is a renormalization group treatment of the localization
transition including interactions effects. This is not yet a finished theory.
It is only a model system in which we can start building some intuition.
There are many aspects of the theory which 1 have not even mentioned,
like the Hall Effect. There are many open problems. A calculation to
order N~2? must be carried out to check the consistency of the
renormalization procedure that I have described. Also more realistic
interactions have to be considered. 1 hope to have motivated some of
you to take a closer look at some of these problems.

Note added in proof: The complete version of this work has been published
recently [M. Ma and E. Fradkin, Phys. Rev. B28 (1983) 2990]. The
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1 i A th la~t M
calculation of the renormalized density of states presented in these lectures is
9 i 3 h 4l hern
incorrect. The correct calculation is presented in the paper quoted above.
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