
Physics 561, Fall Semester 2015

Professor Eduardo Fradkin

Problem Set No. 2:

Green Functions and Perturbation Theory

Due Date: October 12, 2015

1 Antiferromagnetic Spin Waves

In this problem you will consider the Heisenberg model of a one-dimensional
quantum antiferromagnet. I first give you a brief summary on the Heisenberg
model. You do not need to have any previous knowledge on magnetism (or the
Heisenberg model) to do this problem. You will be able to solve this problem
only with the methods that were discussed in class.

The one-dimensional Heisenberg model is defined on a linear chain ( a one-
dimensional lattice) with N sites. The lattice spacing will be taken to be equal
to one (i.e., it is the unit of length). The quantum mechanical Hamiltonian for
this system is

Ĥ = J

N/2
∑

n=−N/2+1

Ŝk(n) · Ŝk(n+ 1) (1)

where the exchange constant J > 0 ( i.e., an antiferromagnet) and the oper-
ators Ŝk (k = 1, 2, 3) are the three angular momentum operators in the spin-S
representation ( S is integer or half-integer) which satisfy the commutation re-
lations

[Ŝj , Ŝk] = iǫjklŜl (2)

For simplicity we will assume periodic boundary conditions, Ŝk(n) ≡ Ŝk(n+N).
In the semi-classical limit, S → ∞, the operators act like real numbers since

the commutators vanish. In this limit, the state with lowest energy has nearby
spins which point in opposite ( but arbitrary!) directions in spin space. This
is the classical Néel state. In this state the spins on one sub-lattice ( say the
even sites) point up along some direction in space while the spins on the other
sub-lattice ( the odd sites) point down. At finite values of S, the spins can only
have a definite projection along one axis but not along all three at the same
time. Thus we should expect to see some zero-point motion precessional effect
that will depress the net projection of the spin along any axis but, if the state
is stable, even sites will have predominantly up spins while odd sites will have
predominantly down spins. This observations motivate the following definition
of a set of basis states for the full Hilbert space of this system.

The states |Ψ〉 of the Hilbert space of this chain are spanned by the tensor
product of the Hilbert spaces of each individual jth spin |Ψj〉, |Ψ〉 = ∏

j ⊗|Ψj〉.
The latter are simply the 2S + 1 degenerate multiplet of states with angular
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momentum S of the form {|S,M(j)〉} (|M(j)| ≤ S) which satisfy

~S2(j)|S,M(j)〉 = S(S + 1)|S,M(j)〉
S3(j)|S,M(j)〉 = M(j)|S,M(j)〉 (3)

The states in this multiplet can be obtained from the highest weight state |S, S〉
by using the lowering operator Ŝ− = Ŝ1− iŜ2. Its adjoint is the raising operator
Ŝ+(j) = Ŝ1(j)+iŜ2(j). For reasons that will become clear below, it is convenient
to define for j even ( even site) the spin-deviation operator n̂(j) ≡ S − Ŝ3(j).
For an odd site ( j odd) the spin deviation operator is n̂(j) ≡ S + Ŝ3(j). For
j even, the highest weight state |S, S〉 is an eigenstate of n̂(j) with eigenvalue
zero while the state |S,−S〉 has eigenvalue 2S

n̂(j)|S, S〉 = (S − Ŝ3(j))|S, S〉 = 0

n̂(j)|S,−S〉 = (S − Ŝ3(j))|S,−S〉 = 2S |S,−S〉 (4)

whereas for j odd the state |S,−S〉 has zero eigenvalue while the state |S, S〉
has eigenvalue 2S.

In terms of the operators n̂(j), the basis states are {|S,M(j)〉} ≡ {|n(j)〉},
whereM(j) = S∓n(j). For even sites, the raising and lowering operators Ŝ(j)±

act on the states of this basis like

Ŝ+|n〉 =

[

2S

(

1− n− 1

2S

)

n

]
1

2

|n− 1〉

Ŝ−|n〉 =
[

2S(n+ 1)
(

1− n

2S

)]
1

2 |n+ 1〉 (5)

For odd sites the action of the above two operators is interchanged.
The action of the operators Ŝ± is somewhat similar to that of annihilation

and creation operators in harmonic oscillator states. For this reason we define
a set of creation and annihilation operators â† and â such that

â†|n〉 =
√
n+ 1|n+ 1〉

â|n〉 =
√
n|n− 1〉 (6)

which satisfy the conventional algebra [â, â†] = 1. Since we have two sub-lattices
and the operators Ŝ± are different on each sub-lattice, it is useful to introduce
two types of creation and annihilation operators: the operators â†(j) and â(j)

which act on even sites, and b̂†(j) and b̂(j) which act on odd sites. They obey
the commutation relations

[

â(j), â†(k)
]

=
[

b̂(j), b̂†(k)
]

= δjk

[â(j), â(k)] =
[

b̂(j), b̂(k)
]

=
[

â(j), b̂(k)
]

= 0

(7)

and similar equations for their hermitian conjugates. It is easy to check that
the action of raising and lowering operators on the states {|n〉} is the same as
the action of the following operators on the same states
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1. On even sites:

Ŝ+(j) =
√
2S

[

1− n̂(j)

2S

]
1

2

â(j)

Ŝ−(j) =
√
2Sâ†(j)

[

1− n̂(j)

2S

]
1

2

Ŝ3(j) = S − n̂(j)

n̂(j) = â†(j)â(j) (8)

2. On odd sites:

Ŝ−(j) =
√
2S

[

1− n̂(j)

2S

]
1

2

b̂(j)

Ŝ+(j) =
√
2Sb̂†(j)

[

1− n̂(j)

2S

]
1

2

Ŝ3(j) = −S + n̂(j)

n̂(j) = b̂†(j)b̂(j) (9)

Notice that although the integers n can now range from 0 to infinity, the Hilbert
space is still finite since (for even sites) Ŝ−|n = 2S〉 = 0. Similarly, for odd sites,
the state |n = 2S〉 is anihilated by the operator Ŝ+.

1. Derive the quantum mechanical equations of motion obeyed by the the
spin operators Ŝ±(j), Ŝ3(j) in the Heisenberg representation, for both j
even and j odd. Are these equations linear? Explain your result.

2. Verify that the definition for the operators S± and S3 of equations 8 and
9 are consistent with those of equation 5.

3. Use the definitions given above to show that the Heisenberg Hamiltonian
can be written in terms of two sets of creation and annihilation operators
â†(j) and â(j) (which act on even sites), and b̂†(j) and b̂(j) which act on
odd sites.

4. Find an approximate form for the Hamiltonian which is valid in the semi-
classical limit S → ∞ ( or 1

S → 0). Include terms which are of order 1
S

(relative to the leading order term). Show that the approximate Hamilto-
nian is quadratic in the operators a and b.

5. Make the approximations of section (4) on the equations of motion of
section (1). Show that the equations of motion are now linear. Of what
order in 1

S are the terms that have been neglected?
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6. Show that the Fourier transform

â(q) =

√

2

N

∑

j even

eiqj â(j)

b̂(q) =

√

2

N

∑

j odd

e−iqj b̂(j) (10)

followed by the canonical (Bogoliubov) transformation

ĉ(q) = cosh(θ(q)) â(q) + sinh(θ(q)) b̂†(q)

d̂(q) = cosh(θ(q)) b̂(q) + sinh(θ(q)) â†(q) (11)

yields a diagonal Hamiltonian HSW of the form

HSW = E0 +

∫ +π

2

−π

2

dq

2π
ω(q)(n̂c(q) + n̂d(q)) (12)

where n̂c(q) = ĉ†(q)ĉ(q), n̂d(q) = d̂†(q)d̂(q), provided that the angle θ(q)

is chosen properly. The operators ĉ(q) and d̂(q) and their hermitian con-
jugates obey the algebra of eq (6). Derive an explicit expression for the
angle θ(q) and for the frequency ω(q).

7. Find the ground state for this system in this approximation ( usually called
the spin-wave approximation).

8. Find the single particle eigenstates within this approximation. Determine
the quantum numbers of the excitations. Find their dispersion (or energy-
momentum) relations. Find a set of values of the momentum q for which
the energy of the excited states goes to zero. Show that the energy of these
states vanish linearly as the momentum approaches the special points and
determine the spin-wave velocity vs at these points. Note: This is the
semi-classical or spin-wave approximation. The identities of eq (8) and
eq (9) are known as the Holstein-Primakoff identities.

9. Derive an expression for the following propagators in terms of time-ordered
expectation values of the bosonic a and b operators introduced above

(a)
D33(nt, n

′t′) = −i〈gnd|T Ŝ3(n, t)Ŝ3(n
′, t′)|gnd〉 (13)

(b)
D+−(nt, n

′t′) = −i〈gnd|T Ŝ+(n, t)Ŝ−(n′, t′)|gnd〉 (14)

in momentum and frequency space. Be very careful and very explicit in
the way you treat the poles of these propagators. Show that your choice
of frequency integration contour yields a propagator which satisfies the
correct boundary conditions.
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10. Use Wick’s theorem to find an expression for the corresponding time-

ordered functions in the spin-wave approximation in momentum and fre-
quency space.

11. Use the results of the prvious sections to show that D+−(p, ω) has, in
the limit ω → 0, a pole at p = π. Calculate the residue of this pole.
The residue is the square of the order parameter of the system in this
approximation.

2 The Electron Gas

In this problem you will consider the weakly interacting electron gas we discussed
in class.

1. Show that the Feynman propagator for the non-interacting system

Gσσ′

0 (x, x′) = −i0〈G|Tψσ(x)ψ
†
σ′ (x

′)|G〉0 (15)

where |G〉0 is the ground state of the non-interacting system, has the
Fourier transform

Gσσ′

0 (~p, ω) =
δσσ′

ω − E0(~p)
h̄ + isign(ω) δ

(16)

where E0(~p) =
p 2

2m −EF . Show that this expression is consistent with the
propagator being time ordered.

2. The one-particle density matrix is defined by the equal time ground state
expectation value

∑

σ

〈G|ψ†
σ(~x)ψσ(~y)|G〉 (17)

(a) Find an exact relation between the one-particle density matrix and
the Feynman propagator

(b) Compute the one-particle density matrix for non interacting fermions.
Discuss it behavior at both short and long distances R =| ~x−~y | com-
pared with the Fermi wavelength λF = h̄/pF .

3. (a) Draw all the Feynman diagrams in momentum space that contribute
to the electron propagator to second order in the electron-electron
interaction potential

(b) Find the contribution of each diagram and express your result a suit-
able momentum integral(s). Make sure you indicate the multiplicity
of each diagram (i. e. how many diagrams have the same weight)
and the fermionic sign of each diagram. Do not do the integrals.

(c) Show that the vacuum diagrams cancel out to this order.
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(d) Classify your connected diagrams into one-particle reducible and one
particle irreducible diagrams. Indicate the contributions to the elec-
tron self-energy Σσσ′

(~p, ω) at second order in the interaction poten-
tial.

4. We will imagine that the electron system interacts with an external po-
tential Vext(~x) which we will take to be static and to correspond to a point
charge of strength Q at the origin, Vext(~x) = Qδ(3)(~x). The change of the
local density δρ(~x) caused by the perturbation Vext(~x) is obtained by the
expression

δρ(~x) = 〈G|ψ†
σ(~x)ψσ(~x)|G〉

∣

∣

Vext

− 〈G|ψ†
σ(~x)ψσ(~x)|G〉

∣

∣

Vext=0
(18)

(a) Use perturbation theory in the external potential to find an expres-
sion for δρ(~x) to linear order in the external potential Vext(~x) in terms
of the density propagator of the electronic system that we discussed
in class. Which regime of the density propagator is of interest in this
case?

(b) Use the results discussed in class to draw conclusions on the spacial
behavior of the density. You may want to phrase your answer in
momentum space using spacial Fourier transforms. Note: you may
quote results on any integrals that you may need from my notes or
from textbooks.
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