Solution to Problem Set No. 4:
Quantum Mechanics in two and three Dimensions

Simon Lin
November 13, 2017

1 Charged Particle in an Uniform Magnetic Field

1.1

First note that the Hamiltonian can be written as

$$\hat{H} = \frac{1}{2M} \left(\hat{\Pi}^2_x + \hat{\Pi}^2_y \right)$$ \hspace{1cm} (1)

$$= \frac{1}{2M} \left(\left(\hat{P}_x + \frac{eB}{2c} \hat{Y} \right)^2 + \left(\hat{P}_y - \frac{eB}{2c} \hat{X} \right)^2 \right)$$ \hspace{1cm} (2)

$$= \frac{1}{2M} \left[(\hat{P}_x^2 + \hat{P}_y^2) + \left(\frac{eB}{2c} \right)^2 (\hat{X}^2 + \hat{Y}^2) + \frac{eB}{c}(\hat{P}_x \hat{Y} - \hat{P}_y \hat{X}) \right]$$ \hspace{1cm} (3)

$$= \frac{1}{2M} \left[(\hat{P}_x^2 + \hat{P}_y^2) + \left(\frac{eB}{2c} \right)^2 (\hat{X}^2 + \hat{Y}^2) - \frac{eB}{c} \hat{L}_z \right]$$ \hspace{1cm} (4)

We will prove \hat{L}_z is a conserved quantity by showing it commutes with the Hamiltonian.

$$[\hat{L}_z, \hat{H}] = \frac{1}{2M} \left([\hat{L}_z, \hat{P}_x^2 + \hat{P}_y^2] + \left(\frac{eB}{2c} \right)^2 [\hat{L}_z, \hat{X}^2 + \hat{Y}^2] \right)$$ \hspace{1cm} (5)

Note that

$$[\hat{L}_z, \hat{X}^2 + \hat{Y}^2] = [\hat{X} \hat{P}_y - \hat{Y} \hat{P}_x, \hat{X}^2 + \hat{Y}^2]$$ \hspace{1cm} (6)

$$= \hat{X} [\hat{P}_y, \hat{Y}^2] - \hat{Y} [\hat{P}_x, \hat{X}^2]$$ \hspace{1cm} (7)

$$= 2i\hbar (\hat{X} \hat{Y} - \hat{Y} \hat{X})$$ \hspace{1cm} (8)

$$= 0$$ \hspace{1cm} (9)

Similarly we can also show that

$$[\hat{L}_z, \hat{P}_x^2 + \hat{P}_y^2] = 0$$ \hspace{1cm} (10)

Hence both terms in the commutators vanish. In other words,

$$[\hat{L}_z, \hat{H}] = 0$$ \hspace{1cm} (11)
So \(\hat{L}_z \) is a conserved quantity. Now we write \(\hat{L}_z \) in polar coordinates

\[
\hat{L}_z = \hat{X} \hat{P}_y - \hat{Y} \hat{P}_x
\]

\[
= -i\hbar (r \cos \varphi \partial_y - r \sin \varphi \partial_x)
\]

\[
= -i\hbar \left[r \cos \varphi \left(-\sin \varphi \partial_r + \frac{\cos \varphi}{2r} \partial_\varphi \right) - r \sin \varphi \left(-\cos \varphi \partial_r - \frac{\sin \varphi}{2r} \partial_\varphi \right) \right]
\]

\[
= -i\hbar \partial_\varphi
\]

(12)

(13)

(14)

(15)

The Hamiltonian in polar coordinates easily follows:

\[
\hat{H} = \frac{1}{2M} \left[(\hat{P}_x^2 + \hat{P}_y^2) + \left(\frac{eB}{2c} \right)^2 (\hat{X}^2 + \hat{Y}^2) - \frac{eB}{c} \hat{L}_z \right]
\]

\[
= \frac{1}{2M} \left[-\hbar^2 \nabla^2 + \left(\frac{eB}{2c} \right)^2 r^2 + i\hbar \frac{eB}{c} \partial_\varphi \right]
\]

(16)

(17)

\[
\nabla^2 = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2}{\partial \varphi^2}
\]

(18)

is the Laplacian operator in polar coordinates. The stationary Schrödinger equation in polar coordinates is thus

\[
\frac{1}{2M} \left[-\hbar^2 \nabla^2 + \left(\frac{eB}{2c} \right)^2 r^2 + i\hbar \frac{eB}{c} \partial_\varphi \right] \Psi(r, \varphi) = E \Psi(r, \varphi)
\]

(19)

1.2

We know \(\hat{L}_z \) is conserved, i.e. if \(\Psi \) is the solution to the wave equation, then it is also an eigenstate of \(\hat{L}_z \). Based on this fact we demand that

\[
\hat{L}_z \Psi = -i\hbar \frac{\partial}{\partial \varphi} \Psi(r, \varphi) = m\hbar \Psi(r, \varphi)
\]

(20)

Solving for this equation immediately gives

\[
\Psi(r, \varphi) = \frac{1}{\sqrt{2\pi}} e^{im\varphi} R_m(r)
\]

(21)

The factor \(1/\sqrt{2\pi} \) is just a convinent normalization factor which comes from requiring the radial and angular wave functions be seperately normalized. The \(m \) appearing in the exponent stands for the angular momentum of this state. This wavefunction must be continuous across \(\varphi = 0 \) and \(\varphi = 2\pi \), so \(m \) can only be an integer.

Now plugging this solution back into our polar Schrödinger equation, we find

\[
\frac{1}{2M} \left[-\hbar^2 \frac{\partial}{\partial r} \left(r \frac{\partial R_m(r)}{\partial r} \right) + m^2 \hbar^2 R_m(r) \frac{r^2}{2} + \left(\frac{eB}{2c} \right)^2 r^2 R_m(r) - m\hbar \frac{eB}{c} R_m(r) \right] = E_m R_m(r)
\]

(22)

or expressed in terms \(\omega_c \) and \(l_0 \):

\[
\frac{\omega_c^2 l_0^2}{2\hbar} \left[-\hbar^2 \frac{\partial}{\partial r} \left(r \frac{\partial R_m(r)}{\partial r} \right) + m^2 \hbar^2 R_m(r) \frac{r^2}{2} + \frac{\hbar^2}{4l_0^2} r^2 R_m(r) - \frac{m\hbar^2}{l_0^2} R_m(r) \right] = E_m R_m(r)
\]

(23)
As for the boundary conditions, the wave function $\Psi(r, \varphi)$ must be continuous and integrable at $r = 0$, so we have

$$R_m(r) \sim r^{|m|} \quad \text{as } r \to 0$$

(24)

and we also need $R_m(r)$ to go to zero faster than $1/r^2$ to ensure normalizability, so the boundary condition at infinity reads

$$|R_m(r)| < \frac{1}{r^2} \quad \text{as } r \to \infty$$

(25)

1.3

By making a change of variables

$$R_m(r) = e^{-\frac{u}{2}} u^{|m|} F(u), \quad u = \frac{r^2}{2l_0^2}$$

(26)

The differentials transforms as

$$\frac{d}{dr} = \frac{\sqrt{2u} \; d}{l_0 \; du}$$

(27)

Now we substitute all these new definitions to the radial Schrödinger equation. After a bit of algebra, we can show that it becomes

$$u F''(u) + (|m| - u - 1) F'(u) + \left[\frac{1}{2}(|m| - m + 1) - \frac{E_m}{\hbar \omega_c} \right] F(u) = 0$$

(28)

By comparing with the form of the differential equation satisfied by the confluent hypergeometric functions we find that

$$\alpha = \frac{1}{2}(|m| - m + 1) - \frac{E_m}{\hbar \omega_c}, \quad \gamma = |m| + 1$$

(29)

And the confluent hypergeometric functions $F(\alpha, \gamma, u)$ is given by

$$F(\alpha, \gamma, u) = 1 + \frac{\alpha u}{\gamma 1!} + \frac{\alpha(\alpha + 1) u^2}{\gamma(\gamma + 1) 2!} + \cdots$$

(30)

We see that our solution already satisfies the boundary condition at the origin since $R_m(r) \sim r^{|m|}$ as $r \to 0$. However we also need the radial wave function $R_m(r) \to 0$ fast enough as $r \to \infty$. Therefore $F(u)$ must not grow exponentially as $r \to \infty$. We need $F(u)$ to be terminate after finite terms, which is to say that α must be a negative integer. More specifically, if $F(u)$ is a polynomial of degree n, then

$$\alpha = \frac{1}{2}(|m| - m + 1) - \frac{E_m}{\hbar \omega_c} = -n$$

(31)

$$\Rightarrow E_m = \hbar \omega_c \left[\frac{1}{2}(|m| - m + 1) + n \right]$$

(32)

The allowed energy values are called Landau levels. For $m \geq 0$ states, the electron rotates in “wrong classical direction”. The energy is now independent of m. We have huge degeneracies for each level since m can now take any positive integral values.

$$E_m = \hbar \omega_c \left(n + \frac{1}{2} \right)$$

(33)
The $m < 0$ states are actually redundant. If we carefully examine the definitions of α and γ again, we would find that picking a negative m is actually equivalent to a shift $n \rightarrow n + |m|$. As a result we only need to consider the case of $m \geq 0$.

It may seem that we now have a infinite number of degeneracies here. However it is not the case. As we shall see in the following part of this problem, the quantum number n controls the spread while m controls the expectation value $\langle r \rangle$ of the wave function. Therefore the allowed number of electrons in a given state is approximately contoled by the area (or more precisely, the **magnetic flux**) of the system.

1.4

For $n = 0$ states the all the higher order terms hypergeometric function $F(u)$ vanish. Our wave function is simply (with correct normalization)

$$
\Psi(u, \varphi) = \frac{1}{\sqrt{2\pi}} e^{i m \varphi} \frac{1}{l_0 \sqrt{m!}} e^{-\frac{u^2}{2}} u^{\frac{m}{2}}
$$

We plot the radial probability distribution function for $m = 0$ and $m = 1$ below (setting $l_0^2 = 1$):

![Radial Probability Distribution Function](image)

The expectation value of r^2 is

$$
\langle 0, m | r^2 | 0, m \rangle = \frac{1}{l_0^2 m!} \int_0^\infty e^{-\frac{r^2}{2l_0^2}} \left(\frac{r^2}{2l_0^2} \right)^m r^3 dr
\tag{35}
$$

$$
= 2l_0^2 (1 + m)
\tag{36}
$$

The mean square root value of the position vector is thus

$$
\sqrt{\langle r^2 \rangle} = l_0 \sqrt{2(1 + m)}
\tag{37}
$$

With this expression we can work out the actual number of degenercies in the $n = 0$ Landau level. We know that the expectation value $\langle r \rangle$ of the wave function cannot be greater than the radius of the disk R. The maximally allowed m in this level is thus

$$
m_{\text{max}} \approx \frac{R^2}{2l_0^2} = \frac{eBR^2}{2hc} = \frac{e\Phi}{\hbar c}
\tag{38}
$$

where $\Phi = 2\pi R^2 B$ is the magnetic flux through the disk.
1.5

The Schrödinger equation in the presence of vector potential \(\vec{A} \) is

\[
\frac{i \hbar}{\partial t} \Psi = \frac{1}{2M} \left(\hat{\Pi}_x^2 + \hat{\Pi}_y^2 \right) \Psi
\]

\[= \frac{1}{2M} \left(\frac{\hbar}{i} \nabla + \frac{e}{c} \vec{A} \right)^2 \Psi \]

\[= \frac{-\hbar^2}{2M} \vec{D}^2 \Psi \]

Taking the complex conjugate of the last equation we obtain

\[
-i \frac{\hbar}{\partial t} \Psi^* = -\frac{\hbar^2}{2M} \vec{D}^* \Psi^*
\]

where \(\vec{D}^* \) is the conjugate of the covariant derivative.

Multiply (41) by \(\Psi^* \) and subtract (42) multiplied by \(\Psi \):

\[
i \frac{\hbar}{\partial t} \left(\Psi^* \frac{\partial}{\partial t} \Psi + \Psi \frac{\partial}{\partial t} \Psi^* \right) = \frac{\hbar^2}{2M} (\Psi^* \vec{D}^2 \Psi - \Psi \vec{D}^* \Psi^*)
\]

\[
i \frac{\hbar}{\partial t} |\Psi|^2 = \frac{\hbar^2}{2M} (\Psi^* \vec{D}^2 \Psi - \Psi \vec{D}^* \Psi^*)
\]

The RHS of this equation can be written as

\[
\Psi^* \vec{D}^2 \Psi - \Psi \vec{D}^* \Psi^* = \Psi^* (\nabla + i \frac{e}{\hbar c} \vec{A})^2 \Psi - \Psi (\nabla - i \frac{e}{\hbar c} \vec{A})^2 \Psi^*
\]

\[= i \frac{e}{\hbar c} \left[\Psi^* (\nabla^2 + \nabla \cdot \vec{A} + \vec{A} \cdot \nabla) \Psi + \Psi (\nabla^2 + \nabla \cdot \vec{A} + \vec{A} \cdot \nabla) \Psi^* \right]
\]

\[= \nabla \cdot (\Psi^* \vec{D} \Psi - \Psi \vec{D}^* \Psi^*)
\]

Hence we got the probability continuity equation

\[
\frac{\partial}{\partial t} |\Psi|^2 + \nabla \cdot \vec{J} = 0
\]

where

\[
\vec{J} = \frac{\hbar}{2Mi} (\Psi^* \vec{D} \Psi - \Psi \vec{D}^* \Psi^*)
\]

Now we need the expression for the current in polar coordinates. Let us first start with the covariant derivative:

\[
\vec{D} = \nabla + i \frac{e}{\hbar c} \vec{A}
\]

\[= \left(\frac{1}{r} \frac{\partial}{\partial r} (r \vec{A}_r) \right) \vec{e}_r + \left(\frac{1}{r} \frac{\partial}{\partial \varphi} + i \frac{e}{\hbar c} A_\varphi \right) \vec{e}_\varphi
\]

We can obtain the radial and the azimuthal components of the current

\[
J_r = \frac{\hbar}{2Mi} \left(\frac{1}{r} \left[\Psi^* \frac{\partial}{\partial r} (r \Psi) - \Psi \frac{\partial}{\partial r} (r \Psi^*) \right] + \frac{2e}{\hbar c} A_r |\Psi|^2 \right)
\]

\[
J_\varphi = \frac{\hbar}{2Mi} \left(\frac{1}{r} \left[\Psi^* \frac{\partial}{\partial \varphi} \Psi - \Psi \frac{\partial}{\partial \varphi} \Psi^* \right] + \frac{2e}{\hbar c} A_\varphi |\Psi|^2 \right)
\]
For Landau level wave function $\Psi = e^{im\varphi} F(u)$ we have (using the fact that $F(u)$ is always real):

\[
J_r = \frac{\hbar A_r}{M} |\Psi|^2 = 0 \quad (54)
\]

\[
J_\varphi = \frac{\hbar}{M} \left(\frac{m}{r} + \frac{e}{\hbar c} A_\varphi \right) |\Psi|^2 = \frac{\hbar}{M} \left(\frac{m}{r} + \frac{eB}{2c} r \right) |\Psi|^2 \quad (55)
\]

Specifically, for $m = 0$ and $m = 1$:

\[
J_\varphi(m = 0) = \frac{eB}{2cM} r e^{-u} \quad (56)
\]

\[
J_\varphi(m = 1) = \frac{\hbar}{M} \left(\frac{1}{r} + \frac{eB}{2c} r \right) e^{-u} u \quad (57)
\]

We found that no matter what number m is, the radial component of \vec{J} vanishes. This is not surprising since all the Landau level wave function we solved are stationary eigenstates. However the azimuthal component is nonzero and has a part that scales with m, which is a result from the fact that it is a eigenstate of angular momentum $m\hbar$. The other part that scales with Br can be viewed as the current generated by the classical magnetic field, in analogy of an electron circulating in a constant magnetic field. Note that despite the angular part of \vec{J} is non-zero, the divergence of the current is indeed vanishing, as we are dealing with energy eigenstates.

2 Angular Momentum in Three Dimensions

2.1

We first note that the rotation generators satisfy the commutation relation

\[
[J_i, J_j] = \epsilon_{ijk} J_k \quad (58)
\]

And the definition of total angular momentum operator and the raising/lowering operators

\[
J^2 = \sum_i J_i^2, \quad J_\pm = J_x \pm i J_y \quad (59)
\]

One can check that J^2 commute with all the J_i’s. As in usual we choose our basis $|j, m\rangle$ to be the eigenbasis of J^2 and J_z:

\[
J^2 |l, m\rangle = j(j+1)\hbar^2 |j, m\rangle, \quad J_z |j, m\rangle = m\hbar |j, m\rangle \quad (60)
\]

To find the matrix elements of J_x and J_y, we first focus on the matrix elements of J_\pm:

\[
\langle j, m | J_+ | j, m \rangle = \langle j, m | (J_x - iJ_y)(J_x + iJ_y) | j, m \rangle \quad (61)
\]

\[
= \langle j, m | J^2 - J_z^2 - \hbar J_z | j, m \rangle \quad (62)
\]

\[
= \hbar^2 [j(j+1) - m^2 - m] \quad (63)
\]

\[
= \hbar^2 (j - m)(j + m + 1) \quad (64)
\]

Since the operation of J_+ is to increment m by one, we have

\[
J_+ |j, m\rangle = \hbar \sqrt{(j - m)(j + m + 1)} |j, m + 1\rangle \quad (65)
\]
And using the orthogonality of the basis elements we obtain

\[\langle j', m' | J_+ | j, m \rangle = \hbar \sqrt{(j - m)(j + m + 1)} \delta_{j'j} \delta_{m'm+1} \] (66)

Following the similar procedure we can also show

\[\langle j', m' | J_- | j, m \rangle = \hbar \sqrt{(j + m)(j - m + 1)} \delta_{j'j} \delta_{m'm-1} \] (67)

In a 4x4 \((j = \frac{3}{2})\) basis they read

\[
J_+ = \hbar \begin{pmatrix}
0 & \sqrt{3}/2 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & \sqrt{3}/2 \\
0 & 0 & 0 & 0
\end{pmatrix},
\]

\[
J_- = \hbar \begin{pmatrix}
0 & 0 & 0 & 0 \\
\sqrt{3}/2 & 0 & 1 & 0 \\
0 & 1 & 0 & \sqrt{3}/2 \\
0 & 0 & 0 & 0
\end{pmatrix}
\] (68)

\[
J_x = \frac{1}{2} (J_+ + J_-) = \hbar \begin{pmatrix}
0 & \sqrt{3}/2 & 0 & 0 \\
\sqrt{3}/2 & 0 & 1 & 0 \\
0 & 1 & 0 & \sqrt{3}/2 \\
0 & 0 & 0 & 0
\end{pmatrix},
\]

\[
J_y = \frac{1}{2i} (J_+ - J_-) = \hbar \begin{pmatrix}
0 & -\sqrt{3}i/2 & 0 & 0 \\
\sqrt{3}i/2 & 0 & -i & 0 \\
0 & i & 0 & -\sqrt{3}i/2 \\
0 & 0 & 0 & 0
\end{pmatrix}
\]

\[
J_z = \hbar \begin{pmatrix}
3/2 & 0 & 0 & 0 \\
0 & 1/2 & 0 & 0 \\
0 & 0 & -1/2 & 0 \\
0 & 0 & 0 & -3/2
\end{pmatrix}
\] (70)

The \(J^2\) operator is just \(\hbar^2(3/2)(1+3/2)I_{4x4}\). Showing that these matrices satisfy the commutation relation (58) is a trivial task and we will skip it here.

2.2

It is easier to work with \(J_+\) and \(J_-\).

\[
\langle j, m | J_x | j, m \rangle = \frac{1}{2} \langle j, m | J_+ + J_- | j, m \rangle = 0
\] (71)

\[
\langle j, m | J_y | j, m \rangle = \frac{1}{2i} \langle j, m | J_+ - J_- | j, m \rangle = 0
\] (72)

\[
\langle j, m | J_+^2 | j, m \rangle = \frac{1}{4} \langle j, m | J_+^2 + J_-^2 + 2 J_+ J_- | j, m \rangle
\]

\[
= \frac{\hbar^2}{2} \sqrt{(j - m)(j + m + 1)} \sqrt{(j + m)(j - m + 1)}
\]

\[
= \frac{\hbar^2}{2} [j(j + 1) - m^2]
\] (74)

\[
\langle j, m | J_-^2 | j, m \rangle = \frac{1}{4} \langle j, m | J_-^2 + J_+^2 - 2 J_+ J_- | j, m \rangle
\]

\[
= \frac{\hbar^2}{2} [j(j + 1) - m^2]
\] (75)

\[
\langle j, m | J_g^2 | j, m \rangle = -\frac{1}{4} \langle j, m | J_+^2 - J_-^2 + 2 J_- J_+ | j, m \rangle
\]

\[
= \frac{\hbar^2}{2} [j(j + 1) - m^2]
\] (76)
\[\Delta J_x \Delta J_y = \sqrt{\langle J_x^2 \rangle - \langle J_x \rangle^2} \sqrt{\langle J_y^2 \rangle - \langle J_y \rangle^2} = \frac{\hbar^2}{2} (j(j+1) - m^2) \] (78)

We see that the uncertainties is minimized when \(m = \pm j \), where

\[\Delta J_x \Delta J_y = \frac{\hbar^2 j}{2} \] (79)

This is exactly the lower bound implied from the commutation relation (58) for state \(|j, \pm j\rangle \). For any other states \(|j, m\rangle \) we can show that (58) implies \(\Delta J_x \Delta J_y \geq \frac{\hbar^2}{2} |m| / 2 \), which is smaller than the actual value given by (78).

2.4

We need to work with spin-1 (3 \(\times \) 3) angular momentum matrices. One can show in a similar manner that 3 \(\times \) 3 generators \(J_i \) are

\[
J_x = \frac{\hbar}{\sqrt{2}} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \quad (80)
\]

\[
J_y = \frac{\hbar}{\sqrt{2}} \begin{pmatrix} 0 & -i & 0 \\ i & 0 & -i \\ 0 & i & 0 \end{pmatrix} \quad (81)
\]

\[
J_z = \hbar \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix} \quad (82)
\]

Upon exponentiating we obtain

\[
e^{-i\theta J_x / \hbar} = \begin{pmatrix} \cos \frac{\theta}{2} & -i \sin \frac{\theta}{2} & -\sin \frac{\theta}{2} \\ -i \sin \frac{\theta}{2} & \cos \frac{\theta}{2} & -i \sin \frac{\theta}{2} \\ -\sin \frac{\theta}{2} & -i \sin \frac{\theta}{2} & \cos \frac{\theta}{2} \end{pmatrix} \quad (83)
\]

\[
e^{-i\theta J_y / \hbar} = \begin{pmatrix} \cos \frac{\theta}{2} & -\sin \frac{\theta}{2} & -\sin \frac{\theta}{2} \\ \sin \frac{\theta}{2} & \cos \frac{\theta}{2} & -\sin \frac{\theta}{2} \\ \sin \frac{\theta}{2} & \sin \frac{\theta}{2} & \cos \frac{\theta}{2} \end{pmatrix} \quad (84)
\]

\[
e^{-i\theta J_z / \hbar} = \begin{pmatrix} e^{-i\theta} & 0 & 0 \\ 0 & 0 & e^{i\theta} \\ 0 & e^{-i\theta} & 0 \end{pmatrix} \quad (85)
\]

\[
\Rightarrow D^{(1)} [R(\alpha, \beta, \gamma)] = e^{-i\alpha J_x / \hbar} e^{-i\beta J_y / \hbar} e^{-i\gamma J_z / \hbar}
\]

\[
= \begin{pmatrix} e^{-i(\alpha+\gamma)} \cos \frac{\beta}{2} & -e^{-i\alpha \sin \beta} & e^{i(-\alpha+\gamma)} \sin \frac{\beta}{2} \\ e^{i\gamma \sin \beta} & \cos \beta & -e^{i\gamma \sin \beta} \\ e^{i(\alpha-\gamma)} \sin \frac{\beta}{2} & e^{i\alpha \sin \beta} & e^{i(\alpha+\gamma)} \cos \frac{\beta}{2} \end{pmatrix} \quad (86)
\]
Now we act this finite rotation operator on the state Ψ:

$$|\Psi\rangle = D^{(1)} |1,1\rangle $$ \hspace{1cm} (88)

$$= \begin{pmatrix}
e^{-i(\alpha+\gamma)} \cos \frac{\beta}{2} & -e^{-i\alpha} \sin \frac{\beta}{\sqrt{2}} & e^{i(\alpha+\gamma)} \sin \frac{\beta}{2} \\
e^{-i\gamma} \sin \frac{\beta}{\sqrt{2}} & \cos \beta & -e^{i\gamma} \sin \frac{\beta}{\sqrt{2}} \\
e^{i(\alpha-\gamma)} \sin \frac{\beta}{2} & e^{i\alpha} \sin \frac{\beta}{\sqrt{2}} & e^{i(\alpha-\gamma)} \cos \frac{\beta}{2}
\end{pmatrix} \begin{pmatrix}1 \\ 0 \\ 0\end{pmatrix} $$ \hspace{1cm} (89)

$$= \begin{pmatrix}
e^{-i(\alpha+\gamma)} \cos \frac{\beta}{2} \\
e^{i\gamma} \sin \frac{\beta}{\sqrt{2}} \\
e^{i(\alpha-\gamma)} \sin \frac{\beta}{2}
\end{pmatrix} $$ \hspace{1cm} (90)

So the expectation value of the angular momentum is

$$\langle \Psi | \vec{J} | \Psi \rangle = \sum_i \langle \Psi | J_i | \Psi \rangle \vec{e}_i $$ \hspace{1cm} (91)

$$= (\cos \alpha \sin \beta)\vec{e}_x + (\sin \alpha \sin \beta)\vec{e}_y + (\cos \beta)\vec{e}_z $$ \hspace{1cm} (92)

We note that it is impossible to pick (α, β) such that the expectation value vanish in each component. Since $\langle 1,0 | \vec{J} | 1,0 \rangle = 0$, it is impossible to rotate $|1,1\rangle$ to just $|1,0\rangle$. However we can show that

$$\langle 1,0 | \vec{J} | \Psi \rangle = e^{-i\gamma} \left[(\cos \alpha - i \cos \beta \sin \alpha)\vec{e}_x + (\sin \alpha + i \cos \alpha \cos \beta)\vec{e}_y \right] $$ \hspace{1cm} (93)

and

$$\langle 1,-1 | \vec{J} | \Psi \rangle = \left[(e^{-i\gamma} \sin \beta/2)\vec{e}_x + (e^{i\gamma} \sin \beta)\vec{e}_y + (-e^{i(\alpha-\gamma)} \sin(\beta/2))\vec{e}_z \right] $$ \hspace{1cm} (94)

So it is possible to rotate $|1,1\rangle$ to a linear combination of two other states. By reflection symmetry around the $x-y$ plane we can argue that the same holds for $|1,-1\rangle$ state. Therefore it is always possible to rotate $|1,m\rangle$ into a linear combination of other states involving $|1,m'\rangle$.

3 The Angular Momentum States in the Coordinate Basis

3.1

Recall the definition of orbital angular momenta operator

$$\hat{\mathbf{L}}_k = \epsilon_{ijk} \hat{X}_i \hat{P}_j $$ \hspace{1cm} (95)

In spherical coordinates we have the following relations

$$\begin{align*}
x &= r \sin \theta \cos \phi \\
y &= r \sin \theta \sin \phi \\
z &= r \cos \theta \\
\partial_x &= \frac{1}{r} (\sin \theta \cos \phi \partial_r + \cos \theta \cos \phi \partial_\theta - \csc \theta \sin \phi \partial_\phi) \\
\partial_y &= \frac{1}{r} (\sin \theta \sin \phi \partial_r + \cos \theta \sin \phi \partial_\theta + \csc \theta \cos \phi \partial_\phi) \\
\partial_z &= \frac{1}{r} (\cos \theta \partial_r - \sin \theta \partial_\phi)
\end{align*} $$ \hspace{1cm} (96)
Let us unwrap the definition of L_i and re-express in spherical coordinates (I’ll drop the hat in all operators for convinience):

\[L_x = Y P_z - Z P_y \]
\[= -\hbar \left[(\sin \theta \sin \phi)(\cos \theta \partial_r - \sin \theta \partial_\phi)
- \cos \theta (\sin \theta \sin \phi \partial_r + \cos \theta \sin \phi \partial_\theta + \csc \theta \cos \phi \partial_\phi) \right] \]
\[= -\i \hbar \left[-\sin \phi \partial_\theta - \cot \theta \cos \phi \partial_\phi \right] \]

\[L_y = X P_z - Z P_x \]
\[= -\i \hbar \left[(\sin \theta \cos \phi)(\cos \theta \partial_r - \sin \theta \partial_\phi)
- \cos \theta (\sin \theta \cos \phi \partial_r + \cos \theta \cos \phi \partial_\theta - \csc \theta \sin \phi \partial_\phi) \right] \]
\[= -\i \hbar \left[\cos \phi \partial_\theta - \cot \theta \sin \phi \partial_\phi \right] \]

\[L_z = X P_y - Y P_x \]
\[= -\i \hbar \left[\sin \theta \cos \phi (\sin \theta \sin \phi \partial_r + \cos \theta \sin \phi \partial_\theta + \csc \theta \cos \phi \partial_\phi)
- \sin \theta \sin \phi (\sin \theta \cos \phi \partial_r + \cos \theta \cos \phi \partial_\theta - \csc \theta \sin \phi \partial_\phi) \right] \]
\[= -\i \hbar \partial_\phi \]

With these in hand we can now work out the form of L_{\pm} and L^2:

\[L_{\pm} = L_x \pm i L_y \]
\[= -\i \hbar e^{\pm i \phi} (\pm i \partial_\theta - \cot \theta \partial_\phi) \]
\[L^2 = L^2_x + L^2_y + L^2_z \]
\[= -\hbar^2 (\csc \theta \partial_\theta (\sin \theta \partial_\theta) + \csc^2 \theta \partial^2_\phi) \]

3.2

The spherical harmonics all satisfy the eigen equation

\[l(l + 1)\hbar^2 Y^m_l = L^2 Y^m_l \]
\[= (L^2_x + L^2_y + L^2_z) Y^m_l \]
\[= \left[\frac{1}{2}(L_+ L_- + L_- L_+) + L^2_z \right] Y^m_l \]
\[= (L_- L_+ + \hbar L_z + L^2_z) Y^m_l \]

The highest z-angular momentum function Y^l_l satisfies the L_z eigen equation $\hat{L}_z Y^l_l = l \hbar Y^l_l$. So (111) becomes

\[(L_- L_+ + \hat{l}^2 + l) Y^l_l = l(l + 1) Y^l_l \]
\[\Rightarrow L_- L_+ Y^l_l = 0 \]

Similarly we can show for Y^{-l}_l that

\[L_+ L_- Y^{-l}_l = 0 \]
For the two equations to be simultaneously true we must require

\[L_+ Y_l^t = L_- Y_{-l}^t = 0 \] \hspace{1cm} (118)

In coordinate language the \(L_+ \) equation reads

\[\left(\frac{\partial}{\partial \theta} + i \cot \theta \frac{\partial}{\partial \phi} \right) Y_l^t(\theta, \phi) = 0 \] \hspace{1cm} (119)

Which says that the highest angular momentum state is annihilated by the raising operator \(L_+ \).

3.3

Equation (119) can be easily solved by separation of variables. The solution (with correct normalization) is

\[Y_l^t(\theta, \phi) = (-1)^l \sqrt{\frac{(2l+1)}{4\pi}} \frac{1}{(2l)!} e^{i\phi} \sin^l \theta \] \hspace{1cm} (120)

Act the lowering operator \(L_- \) twice on this function we can obtain \(Y_{-l}^{t-2}(\theta, \phi) \): (assuming \(l > 1 \))

\[Y_{l}^{t-2}(\theta, \phi) = \frac{1}{\hbar^2 \sqrt{2l} \sqrt{2(2l-1)}} L_+^2 Y_l^t(\theta, \phi) \] \hspace{1cm} (121)

\[= \frac{1}{\sqrt{2l} \sqrt{2(2l-1)}} \left[-ie^{i\phi} \left(-i \frac{\partial}{\partial \theta} - \cot \theta \frac{\partial}{\partial \phi} \right) \right]^2 Y_l^t(\theta, \phi) \] \hspace{1cm} (122)

\[= (-1)^{l-2} \sqrt{\frac{(2l+1)}{4\pi}} \frac{2}{(2l-2)!} e^{i(l-2)\phi} [-\sin^l \theta + 2(l-1) \sin^{l-2} \theta \cos^2 \theta] \] \hspace{1cm} (123)