Solution to Problem Set No. 6:
Time Independent Perturbation Theory

Simon Lin
December 4, 2017

1 The Anharmonic Oscillator

1.1

As a first step we invert the definitions of creation and annihilation operators to express \(\hat{X} \), \(\hat{P} \) in terms of \((\hat{a}, \hat{a}^\dagger) \)

\[
\hat{X} = \sqrt{\frac{\hbar}{2m\omega}} (\hat{a}^\dagger + \hat{a})
\]

(1)

\[
\hat{P} = i\sqrt{\frac{m\hbar\omega}{2}} (\hat{a}^\dagger - \hat{a})
\]

(2)

Hence

\[
\hat{V} = \lambda \hat{X}^4
\]

(3)

\[
= \frac{\lambda\hbar^2}{4m^2\omega^2} (\hat{a}^\dagger + \hat{a})^4
\]

(4)

Since the first order wave function mix is proportional to the expectation value \(\langle n|\hat{V}|m \rangle \), we see from the form of \(\hat{V} \) that for \(|m\rangle \) to mix with \(|n\rangle \), one need

\[
n - 4 \leq m \leq n + 4
\]

(5)

1.2

We now expand (4) out and write all terms in normal ordering:

\[
\hat{V} = \frac{\lambda\hbar^2}{4m^2\omega^2} \left[\hat{a}^{4\dagger} + 4\hat{a}^{3\dagger}\hat{a} + 6\hat{a}^{2\dagger}\hat{a}^2 + 4\hat{a}^{3\dagger}\hat{a}^3 + \hat{a}^{4\dagger} + 6\hat{a}^{2\dagger} + 12\hat{a}^\dagger\hat{a} + 6\hat{a}^2 + 3 \right]
\]

(6)

The matrix element \(\langle n|\hat{V}|0 \rangle \) can be read off as

\[
\langle 0|\hat{V}|0 \rangle = 3 \frac{\lambda\hbar^2}{4m^2\omega^2}
\]

(7)

\[
\langle 2|\hat{V}|0 \rangle = 6\sqrt{2} \frac{\lambda\hbar^2}{4m^2\omega^2}
\]

(8)

\[
\langle 4|\hat{V}|0 \rangle = \sqrt{24} \frac{\lambda\hbar^2}{4m^2\omega^2}
\]

(9)
\[\Delta E_n^{(1)} = \langle n|\hat{V}|n \rangle = \frac{\lambda h^2}{4m^2\omega^2} [3 + 12n + 6n(n - 1)] \] (10)

\[|n^{(1)}\rangle = \sum_{m \neq n} \frac{\langle n|\hat{V}|m \rangle}{E_n - E_m} |m\rangle \] (11)
\[= \frac{\lambda h}{4m^2\omega^3} \left(\frac{\sqrt{n(n-1)(n-2)(n-3)}}{4} |n-4\rangle + (2n-1)\sqrt{n(n-1)} |n-2\rangle
- (2n+5)\sqrt{(n+1)(n+2)} |n+2\rangle - \frac{\sqrt{(n+1)(n+2)(n+3)(n+4)}}{4} |n+4\rangle \right) \] (12)

(for \(n < 4 \) just ignore the negative eigenkets)

\[\Delta E_0^{(1)} = \langle 0|\hat{V}|0 \rangle = \frac{3\lambda h}{4m^2\omega^3} \] (13)
\[\Delta E_0^{(2)} = \sum_{m \neq 0} \frac{|\langle m|\hat{V}|0 \rangle|^2}{E_0^{(0)} - E_m^{(0)}} = -\frac{21\lambda^2 h^3}{8m^4\omega^5} \] (14)

2 Charged Particle in a Magnetic Field

2.1 Assuming that the eigen wave function can be factorized into \(\Psi = 1/\sqrt{L}e^{iky}\phi(x) \) and plug it into the unperturbed Schrödinger equation \(H_0\Psi = E\Psi \) we can show that
\[e^{iky} \left[\hat{P}^2_x + \left(k\hbar - \frac{eB}{c} x \right)^2 \right] \phi_n(x) = 2MEe^{iky}\phi_n(x) \] (15)

We can factor \(e^{iky} \) out and rewrite the full eigen equation as
\[\left[\hat{P}^2_x + \left(k\hbar - \frac{eB}{c} X \right)^2 \right] \phi_n = 2M \phi_n \] (16)

We see that if we make a shift
\[x \rightarrow x' = x - \frac{k\hbar c}{eB} \] (17)
\[= x - kl^2 \] (18)

then since it is just a shift on \(x \), \(P_X \) stays invariant. So we can cast the whole eigen equation in terms of \(x' \):
\[\left[\hat{P}^2_{x'} + \frac{\hbar^2}{l^2} x'^2 \right] \phi_n = 2M \phi_n \] (19)
Hence the eigen function ϕ_n must be a function of $x' = x - kl^2$. Also note that this equation is just the equation of the 1D simple harmonic oscillator. We can directly write down its solution in terms of Hermite polynomials:

$$\phi_n(x') = [4^n(n!)^2\pi\hbar l^2]^{-1/4} H_n \left(\frac{x'}{l} \right) e^{-x'^2/2l^2} \tag{20}$$

The whole solution is thus

$$\Psi_{n,k}(x,y) = \frac{1}{\sqrt{L}} e^{iky} \phi_n(x - kl^2) \tag{21}$$

The unperturbed energies are just the eigen energy of a simple harmonic oscillator

$$E_{n,k} = \frac{\hbar eB}{Mc} (n + \frac{1}{2}) \tag{22}$$

$$= \hbar \omega_c (n + \frac{1}{2}) \tag{23}$$

We see that the $\Psi(x,y)$ is also a eigen function of \hat{P}_y. If we demand periodic boundary condition in the y direction, then we can show that $k = 2\pi m/L$, where m is an integer. The constraint from magnetic flux is more subtle. In order to do this we first consider the case where the length of strip W is finite and then take $W \to \infty$. We know that the symmetric point $x - kl^2$ of the wave function has to lie inside the region $-W/2 < x < W/2$, so

$$|kl^2| < \frac{W}{2} \tag{24}$$

$$\left| \frac{2\pi hc}{eBL} m \right| < \frac{W}{2} \tag{25}$$

$$|m| < \frac{eBW L}{4\pi hc} = \frac{N_\phi}{2} \tag{26}$$

Since m can only take integer values, the allowed values of m is thus

$$-\frac{N_\phi - 1}{2} < m < \frac{N_\phi - 1}{2} \tag{27}$$

2.2

Since $[\hat{H}, \hat{P}_y] = 0$, the y-momentum is conserved and the inner products of different k eigenstates vanish by orthogonality. If $\tilde{V}(x)$ is an operator only depending on x, we can factor out the x and y inner products and show that $\langle n', k' | \tilde{V} | n, k \rangle$ of different k vanish. More explicitly:

$$\langle n', k' | \tilde{V}(x) | n, k \rangle = \langle k' | \otimes \langle \phi_{n',k'} | \tilde{V}(x) (| k \rangle \otimes | \phi_{n,k} \rangle) \tag{28}$$

$$= \langle k' | k \rangle \langle \phi_{n',k'} | \tilde{V}(x) | \phi_{n,k} \rangle \tag{29}$$

$$= \delta_{k,k'} \langle n', k' | \tilde{V}(x) | n, k \rangle \tag{30}$$

2.3

We skip the y integrals here since the wave functions in y direction are othonomal.

$$V_{00}(k) = \frac{V_0}{\sqrt{\pi \hbar l^2}} \int_{-\infty}^{\infty} dx e^{-\frac{(x-kl)^2}{\alpha^2}} e^{-\frac{x^2}{2a^2}} \tag{31}$$

$$= \frac{V_0}{\sqrt{\hbar}} \left(\frac{l^2}{2a^2} + 1 \right)^{-\frac{1}{2}} e^{-\frac{k^2l^2}{2a^2} + l} \tag{32}$$
\[V_{11}(k) = \frac{V_0}{\sqrt{4\pi\hbar^2}} \int_{-\infty}^{\infty} dx \frac{4x^2}{l^2} e^{-\frac{(x-kl)^2}{l^2}} e^{-\frac{x^2}{2a^2}} \]
\[= \sqrt{8}V_0 \frac{a^3(l^2 + 2a^2(2k^2 + 1))}{(2a^2 + l^2)^{\frac{3}{2}}} e^{-\frac{k^2l^2}{2a^2 + l^2}} \] (33)

\[V_{01}(k) = V_{10}(k) = \frac{V_0}{\sqrt{2\pi\hbar^2}} \int_{-\infty}^{\infty} dx \frac{2x}{l} e^{-\frac{(x-kl)^2}{l^2}} e^{-\frac{x^2}{2a^2}} \]
\[= \sqrt{8}V_0 \frac{a^3k}{\sqrt{\hbar}} \frac{1}{(2a^2 + l^2)^{\frac{3}{2}}} e^{-\frac{k^2l^2}{2a^2 + l^2}} \] (34)

2.4

According to first order perturbation theory, the energy shift is proportional to the expectation value of the perturbative potential in the unperturbed eigenstates of which we just computed above.

\[\Delta E_0(k) = V_{00}(k) = \frac{V_0}{\sqrt{\hbar}} \left(\frac{l^2}{2a^2} + 1 \right)^{-\frac{3}{2}} e^{-\frac{k^2l^2}{2a^2 + l^2}} \] (37)

\[\Delta E_1(k) = V_{11}(k) = \frac{\sqrt{8}V_0 a^3(l^2 + 2a^2(2k^2 + 1))}{\sqrt{\hbar}} \frac{1}{(2a^2 + l^2)^{\frac{3}{2}}} e^{-\frac{k^2l^2}{2a^2 + l^2}} \] (38)

We plot the \(k \)-dependence of the energy difference below: (assuming \(V_0 = \hbar = a = l = 1 \))

We see that in the case of ground states, each \(k \) corresponds to a different shift \(\Delta E_0(k) \), so the degeneracies are completely removed. However in the first excited states, there is a region in which there are two different \(k \)'s corresponding to the same energy shift. We still have a two-fold degeneracies in first excited states in this region.

2.5

To the first order, the perturbed wave function is given by

\[\Psi_n^{(1)} = \Psi_n^{(0)} + \sum_{m \neq n} \frac{\langle n|V|m \rangle}{E_n^{(0)} - E_m^{(0)}} \Psi_m^{(0)} \] (39)
Using our previous results we explicitly write down the perturbed wave functions for \(n = 0 \) and \(n = 1 \):

\[
\Psi_{0,k}^{(1)} = \frac{1}{\sqrt{L}} e^{iky} \left[\phi_0(x - kl^2) - \frac{V_{10}(k)}{\hbar\omega_c} \phi_1(x - kl^2) \right]
\]

\[
\Psi_{1,k}^{(1)} = \frac{1}{\sqrt{L}} e^{iky} \left[\phi_1(x - kl^2) + \frac{V_{10}(k)}{\hbar\omega_c} \phi_0(x - kl^2) \right]
\]

(40)

(41)

Where we ignored the contribution from all the higher energy levels.

Now we want to compute the total current

\[
\vec{J} = \frac{\hbar}{2mi} \int_{-\infty}^{\infty} dx \int_{-L/2}^{L/2} dy \vec{j}_{n,k}(x,y)
\]

(42)

where \(\vec{j}_{n,k}(x,y) \) is the current density

\[
\vec{j}_{n,k}(x,y) = \Psi_{n,k}(x,y)^* \vec{\nabla} \Psi_{n,k}(x,y) - \Psi_{n,k}(x,y) \vec{\nabla}^* \Psi_{n,k}(x,y)^*
\]

(43)

We immediately see that \(j_x \) is zero since \(\phi(x) \) is real everywhere even after the perturbation as we already know that wave functions of different \(k \) do not mix. The other component of current can be worked out to be

\[
j_y(x,y) = \frac{\hbar}{mL} |\phi_0^{(1)}(x - kl^2)|^2
\]

(44)

After integrating we obtain the total current as a function of \((n,k) \):

\[
\vec{J}_{n,k} = \frac{\hbar}{m} \hat{y}
\]

(45)

The current is linear to \(k \). This is because we are working with eigenstates of \(\hat{P}_y \) and that the perturbation \(V \) does not depend on \(y \) so it preserves the \(y \)-symmetry.

2.6

If we look at the figure of the first order shift of the energy, we see that there is a region where \(\Delta E_0 > \Delta E_1 \). In this region if we tune \(V_0 \) large enough we can actually see that the two perturbed energy levels starting cross each other. We can calculate the required \(V_0 \) to be

\[
V_0(k) = \frac{\hbar\omega_c}{\Delta E_0(k) - \Delta E_1(k)}
\]

\[
= \sqrt{\frac{\hbar^3}{8\omega_c^2} \frac{(l^2 + 2a^2)^{5/2}}{a^3(l^2 + 4a^2k^2)} e^{2a^2x^2}}
\]

(46)

(47)

We also see that \(\Delta E_0 - \Delta E_1 \) has maximum at \(k = 0 \), so the mixing first occurs at \(k = 0 \) as one gradually increases \(V_0 \).

To resolve the degeneracy we turn to almost degenerate perturbation theory and treat the two nearly degenerate states exactly while keeping states of other \(k \) perturbatively. This means that we need to solve for the matrix equation

\[
\begin{pmatrix}
E_0^{(0)}(k) + V_{00}(k) & V_{01}(k) \\
V_{10}(k) & E_1^{(0)}(k) + V_{11}(k)
\end{pmatrix}
\begin{pmatrix}
\Psi
\end{pmatrix}
= E
\begin{pmatrix}
\Psi
\end{pmatrix}
\]

(48)
Defining $E^{(1)}_n = E^{(0)}_n + V_{nn}$ we write the eigenvalues as

$$E_{\pm}(k) = \frac{E^{(1)}_0(k) + E^{(1)}_1(k)}{2} \pm \sqrt{\left(\frac{E^{(1)}_0(k) - E^{(1)}_1(k)}{2}\right)^2 + V^{2}_{10}(k)}$$

(49)

Here since $V_{10}(k) \neq 0$, the energies will at least be split by $V_{10}(k)$. We see that the energy level actually repels each other as we tune up V_0, and we can infer that there won’t be any level crossing in the perturbative expansion.

3 Model of a Hydrogen-like Atom

3.1

Since $\hat{W}(r)$ is a function only of r, it commutes with the total angular momentum operator \hat{L}^2 and the z-direction angular momentum operator \hat{L}_z. The matrix elements of W can be decomposed into

$$\langle n', l', m' | \hat{W} | n, l, m \rangle = \langle n' | \hat{W}(r) | n \rangle \langle l', m' | l \rangle \langle m \rangle$$

(50)

$$= \delta_{l, l'} \delta_{m, m'} \langle n', l', m' | \hat{W} | n, l, m \rangle$$

(51)

3.2

The perturbative potential $W(r)$ is

$$W(r) = \begin{cases} V_0 + e^2/r , & r \leq d \\ 0 , & r > d \end{cases}$$

(52)

We now calculate the matrix elements of \hat{W}:

$$\langle 1, 0, 0 | \hat{W} | 1, 0, 0 \rangle = \frac{4}{a_0^3} \int_0^d r^2 dr \left(V_0 + \frac{e^2}{r} \right) e^{-2r/a_0}$$

$$= \frac{1}{a_0^3} \left(e^{2\left[a_0 - (a_0 + 2d)e^{-2d/a_0} \right]} + V_0 [a_0^2 - (a_0^2 + 2a_0d + 2d^2)e^{-2d/a_0}] \right)$$

(53)

$$\langle 2, 0, 0 | \hat{W} | 2, 0, 0 \rangle = \frac{1}{8a_0^3} \int_0^d r^2 dr \left(V_0 + \frac{e^2}{r} \right) \left(2 - \frac{r}{a_0} \right)^2 e^{-r/a_0}$$

$$= \frac{1}{8a_0^4} \left(e^{2\left[2a_0^3 - (2a_0^3 + 2a_0^2d + a_0d^2 + d^3)e^{-d/a_0} \right]} + V_0 [8a_0^4 - (8a_0^4 + 8a_0^3d + 4a_0^2d^2 + d^3)e^{-d/a_0}] \right)$$

(54)

$$\langle 2, 1, 0 | \hat{W} | 2, 1, 0 \rangle = \frac{1}{24a_0^4} \int_0^d r^2 dr \left(V_0 + \frac{e^2}{r} \right) \frac{r^2}{a_0^2} e^{-r/a_0}$$

$$= \frac{1}{24a_0^4} \left(e^{2\left[6a_0^3 - (6a_0^3 + 6a_0^2d + 3a_0d^2 + d^3)e^{-d/a_0} \right]} + V_0 [24a_0^4 - (24a_0^4 + 24a_0^3d + 12a_0^2d^2 + 4a_0d^3 + d^4)e^{-d/a_0}] \right)$$

(55)

$$\langle 2, 1, 0 | \hat{W} | 2, 1, 0 \rangle$$

$$= \frac{1}{24a_0^4} \left(e^{2\left[6a_0^3 - (6a_0^3 + 6a_0^2d + 3a_0d^2 + d^3)e^{-d/a_0} \right]} + V_0 [24a_0^4 - (24a_0^4 + 24a_0^3d + 12a_0^2d^2 + 4a_0d^3 + d^4)e^{-d/a_0}] \right)$$

(56)
\[
\langle 2, 0, 0 | \hat{W} | 1, 0, 0 \rangle = \frac{1}{\sqrt{2a_0^2}} \int_0^\frac{e^2}{r} \left(V_0 + \frac{e^2}{r} \right) \left(2 - \frac{r}{a_0} \right) e^{-3r/2a_0} dr
\]
\[
= \frac{\sqrt{2}}{27a_0^3} \left(e^2 [4a_0^2 - (4a_0^2 + 6a_0d + 9d^2)e^{-3d/2a_0}] + 9V_0d^3e^{-3d/2a_0} \right)
\]
\[
(2, 1, \pm 1 | \hat{W} | 2, 1, \pm 1) = \langle 2, 1, 0 | \hat{W} | 2, 1, 0 \rangle
\]

3.3

The shift in the ground state energy is just the matrix element \(\langle 1, 0, 0 | \hat{W} | 1, 0, 0 \rangle \) as we just calculated
\[
\Delta E^{(1)}_{1,0,0} = \frac{1}{a_0^2} \left(e^2 [a_0 - (a_0 + 2d)e^{-2d/a_0}] + V_0[a_0^2 - (a_0^2 + 2a_0d + 2d^2)e^{-2d/a_0}] \right)
\]

3.4

As seen from (56), (58) and (61), it is clear that this perturbation \(W(r) \) lifts the degeneracies between the \(|2, 0, 0\rangle \) and \(|2, 1, 0\rangle \) eigenstates while fail to resolve the 3-fold degeneracy of quantum number \(m \) among \(|2, 1, m\rangle \) states. The energy difference is given by
\[
\Delta E = \frac{e^{-d/a_0}}{12a_0^4} [e^2 d^2(3a_0 - d) + V_0d^3(2a_0 - d)]
\]

This follows from that the radial wave functions are completely determined by quantum number \(l \) in hydrogen atom solutions. As the perturbation does not have angular dependence this feature will continue to hold.