
1 Coherent states and path integral quantiza-

tion.

1.1 Coherent States

Let q and p be the coordinate and momentum operators. They satisfy the
Heisenberg algebra, [q, p] = i~. Let us introduce the creation and annihilation
operators a† and a, by their standard relations

q =

√

~

2mω

(

a† + a
)

(1)

p = i

√

m~ω

2

(

a† − a
)

(2)

Let us consider a Hilbert space spanned by a complete set of harmonic os-
cillator states {|n〉}, with n = 0, . . . ,∞. Let â† and â be a pair of creation and
annihilation operators acting on that Hilbert space, and satisfying the commu-
tation relations

[

â, â†
]

= 1 ,
[

â†, â†
]

= 0 , [â, â] = 0 (3)

These operators generate the harmonic oscillators states {|n〉} in the usual way,

|n〉 = 1√
n!

(

â†
)n |0〉 (4)

â|0〉 = 0 (5)

where |0〉 is the vacuum state of the oscillator.
Let us denote by |z〉 the coherent state

|z〉 = ezâ
†

|0〉 (6)

〈z| = 〈0| ez̄â (7)

where z is an arbitrary complex number and z̄ is the complex conjugate. The
coherent state |z〉 has the defining property of being a wave packet with opti-
mal spread, i.e., the Heisenberg uncertainty inequality is an equality for these
coherent states.

How does â act on the coherent state |z〉?

â|z〉 =
∞
∑

n=0

zn

n!
â
(

â†
)n |0〉 (8)

Since
[

â,
(

â†
)n
]

= n
(

â†
)n−1

(9)

we get

â|z〉 =
∞
∑

n=0

zn

n!

([

â,
(

â†
)n
]

+
(

â†
)n

â
)

|0〉 (10)
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Thus, we find

â|z〉 =
∞
∑

n=0

zn

n!
n
(

â†
)n−1 |0〉 ≡ z |z〉 (11)

Therefore |z〉 is a right eigenvector of â and z is the (right) eigenvalue.
Likewise we get

â†|z〉 = â†
∞
∑

n=0

zn

n!

(

â†
)n |0〉

=

∞
∑

n=0

zn

n!

(

â†
)n+1 |0〉

=

∞
∑

n=0

(n+ 1)
zn

(n+ 1)!

(

â†
)n+1 |0〉

=

∞
∑

n=1

n
zn−1

n!

(

â†
)n |0〉

(12)

Thus,

â†|z〉 = ∂

∂z
|z〉 (13)

Another quantity of interest is the overlap of two coherent states, 〈z|z′〉,

〈z|z′〉 = 〈0|ez̄â ez
′â† |0〉 (14)

We will calculate this matrix element using the Baker-Hausdorff formulas

eÂ eB̂ = e
Â+ B̂ +

1

2

[

Â, B̂
]

= e

[

Â, B̂
]

eB̂ eÂ (15)

which holds provided the commutator
[

Â, B̂
]

is a c-number, i.e., it is propor-

tional to the identity operator. Since
[

â, â†
]

= 1, we find

〈z|z′〉 = ez̄z
′

〈0|ez
′â† ez̄â|0〉 (16)

But
ez̄â |0〉 = |0〉 (17)

and

〈0| ez
′â† = 〈0| (18)

Hence we get

〈z|z′〉 = ez̄z
′

(19)
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An arbitrary state |ψ〉 of this Hilbert space can be expanded in the harmonic
oscillator basis states {|n〉},

|ψ〉 =
∞
∑

n=0

ψn√
n!

|n〉 =
∞
∑

n=0

ψn

n!

(

â†
)n |0〉 (20)

The projection of the state |ψ〉 onto the coherent state |z〉 is

〈z|ψ〉 =
∞
∑

n=0

ψn

n!
〈z|
(

â†
)n |0〉 (21)

Since
〈z| â† = z̄ 〈z| (22)

we find

〈z|ψ〉 =
∞
∑

n=0

ψn

n!
z̄n ≡ ψ(z̄) (23)

Therefore the projection of |ψ〉 onto |z〉 is the anti-holomorphic (i.e., anti-

analytic) function ψ(z̄). In other words, in this representation, the space of
states {|ψ〉} are in one-to-one correspondence with the space of anti-analytic
functions.

In summary, the coherent states {|z〉} satisfy

â|z〉 = z|z〉 〈z|â = ∂z̄〈z|
â†|z〉 = ∂z|z〉 〈z|â† = z̄〈z|
〈z|ψ〉 = ψ(z̄) 〈ψ|z〉 = ψ̄(z)

(24)

Next we will prove the resolution of identity

Î =

∫

dzdz̄

2πi
e−zz̄|z〉〈z| (25)

Let |ψ〉 and |φ〉 be two arbitrary states

|ψ〉 =
∞
∑

n=0

ψn√
n!

|n〉

|ψ〉 =
∞
∑

n=0

ψn√
n!

|n〉

〈φ|ψ〉 =
∞
∑

n=0

φnψn

n!
(26)

Let us compute the matrix element

〈φ|Î |ψ〉 =
∑

m.n

φ̄nψn

n!
〈n|Î|m〉 (27)
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Thus we need to find

〈n|Î|m〉 =
∫

dzdz̄

2πi
e−|z|2〈n|z〉〈z|m〉 (28)

Recall that the integration measure is defined to be given by

dzdz̄

2πi
=
dRezdImz

π
(29)

where

〈n|z〉 = 1√
n!
〈0| (â)n |z〉 = zn√

n!
〈0|z〉 (30)

and

〈z|m〉 = 1√
m!

〈z|
(

â†
)m |0〉 = z̄m√

m!
〈z|0〉 (31)

Now, since |〈0|z〉|2 = 1, we get

〈n|Î|m〉 =
∫

dzdz̄

2πi

e−|z|2
√
n!m!

znz̄m =

∫ ∞

0

ρdρ

∫ 2π

0

dϕ

2π

e−ρ
2

√
n!m!

ρn+mei(n−m)ϕ

(32)
Thus,

〈n|Î |m〉 = δn,m
n!

∫ ∞

0

dx xne−x = 〈n|m〉 (33)

Hence, we have found that
〈φ|Î |ψ〉 = 〈φ|ψ〉 (34)

for any pair of states |ψ〉 and |φ〉. Therefore Î is the identity operator in that
space. We conclude that the set of coherent states {|z〉} is an over-complete set
of states.

Furthermore, since

〈z|
(

â†
)n

(â)
m |z′〉 = z̄nz′m〈z|z′〉 = z̄nz′mez̄z

′

(35)

we conclude that the matrix elements of any arbitrary normal ordered operator
of the form

Â =
∑

n,m

An,m

(

â†
)n

(â)
m

(36)

are equal to

〈z|Â|z′〉 =
(

∑

n,m

An,mz̄
nz′m

)

ez̄z
′

(37)

Therefore, if Â(â, â†) is an arbitrary normal ordered operator (relative to the
state |0〉), its matrix elements are given by

〈z|Â(â, â†)|z′〉 = A(z̄, z′)ez̄z
′

(38)
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where A(z̄, z′) is a function of two complex variables z̄ and z′, obtained from Â
by the formal replacement

â↔ z′ , â† ↔ z̄ (39)

For example, the matrix elements of the the operator N̂ = â†â, which measures
the number of excitations, is

〈z|N̂ |z′〉 = 〈z|â†â|z′〉 = z̄z′ ez̄z
′

(40)

1.2 Path Integrals and Coherent States

As usual we will want to compute the matrix elements of the evolution operator
U ,

U = e
−iT

~
Ĥ(â†, â)

(41)

where Ĥ(â†, â) is a normal ordered operator. Thus, if |i〉 and |f〉 denote two
arbitrary initial and final states, we can write the matrix element of U as

〈f |e
−iT

~
Ĥ(â†, â)

|i〉 = lim
ǫ→0,N→∞

〈f |
(

1−−i ǫ
~
Ĥ(â†, â)

)N

|i〉 (42)

However now, instead of inserting a complete set of states at each intermediate
time tj (with j = 1, . . . , N), we will insert an over-complete set {|zj〉} at each
time tj through the insertion of the resolution of the identity,

〈f |
(

1− i
ǫ

~
Ĥ(â†, â)

)N

|i〉 =

=

∫





N
∏

j=1

dzjdz̄j
2πi



 e

−
N
∑

j=1

|zj |2

〈f |
(

1− i
ǫ

~
Ĥ(â†, â)

)

|zN 〉

×〈zN |
(

1− i
ǫ

~
Ĥ(â†, â)

)

|zN−1〉 . . . 〈z1|
(

1− i
ǫ

~
Ĥ(â†, â)

)

|i〉 =

≡
∫





N
∏

j=1

dzjdz̄j
2πi



 e

−
N
∑

j=1

|zj |2 [N−1
∏

k=1

〈zk+1|
(

1− i
ǫ

~
Ĥ(â†, â)

)

|zk〉
]

×〈f |
(

1− i
ǫ

~
Ĥ(â†, â)

)

|zN 〉〈z1|
(

1− i
ǫ

~
Ĥ(â†, â)

)

|zi〉
(43)

In the limit ǫ→ 0 these matrix elements are

〈zk+1|
(

1− i
ǫ

~
Ĥ(â†, â)

)

|zk〉 =〈zk+1|zk〉 − i
ǫ

~
〈zk+1|Ĥ(â†, â)|zk〉

=〈zk+1|zk〉
[

1− i
ǫ

~
H(z̄k+1, zk)

]

(44)
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where H(z̄k+1, zk) is a function which is obtained from the normal ordered

Hamiltonian by the substitutions â† → z̄k+1 and â → zk. Hence, we can write
the following expression for the matrix element

〈f |e
−iT

~
Ĥ(â†, â)

|i〉 =

= lim
ǫ→0,N→∞

∫





N
∏

j=1

dzjdz̄j
2πi



 e

−
N
∑

j=1

|zj |2

e

N−1
∑

j=1

z̄j+1zj N−1
∏

j=1

[

1− i
ǫ

~
H(z̄k+1, zk)

]

×〈f |zN 〉〈z1|i〉
[

1− i
ǫ

~

〈f |Ĥ|zN 〉
〈f |zN 〉

] [

1− i
ǫ

~

〈z1|Ĥ |i〉
〈z1|i〉

]

(45)

By further expanding the initial and final states in coherent states

〈f | =
∫

dzfdz̄f
2πi

e−|zf |2ψ̄f (zf)〈zf |

|i〉 =
∫

dzidz̄i
2πi

e−|zi|2ψi(z̄i)|zi〉

(46)

we find

〈f |e
−iT

~
Ĥ(â†, â)

|i〉 =

=

∫

DzDz̄ e
i

~

∫ tf

ti

dt

[

~

2i
(z∂tz̄ − z̄∂tz)−H(z, z̄)

]

e

1

2
(|zi|2 + |zf |2)

ψ̄f (zf )ψi(z̄i)

(47)

This is the coherent-state form of the path integral. We can identify in this
expression the Lagrangian L as the quantity

L =
~

2i
(z∂tz̄ − z̄∂tz)−H(z, z̄) (48)

=
1

2
(p∂tq − q∂tp)−H(q, p) (49)

Therefore the coherent state path integral is, in this case, equivalent, to the
path integral over phase space.

Notice that the Lagrangian in the coherent-state representation is first order
in time derivatives. because of this feature we are not guaranteed that the paths
are necessarily differentiable. This property leads to all kinds of subtleties that
for the most part we will ignore in what follows.
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2 Path integral for spin.

We will now discuss the use of path integral methods to describe a quantum
mechanical spin. Consider a quantum mechanical system which consists of a
spin in the spin-S representation of the group SU(2). The space of states of
the spin-S representation is 2S + 1-dimensional, and it is spanned by the basis
{|S,M〉} which are the eigenstates of the operators ~S2 and S3, i.e.,

~S2 |S,M〉 = S(S + 1) |S,M〉
S3 |S,M〉 = M |S,M〉

(50)

with |M | ≤ S (in integer-spaced intervals). This set of states is complete ad
it forms a basis of this Hilbert space. The operators S1, S2 and S3 obey the
SU(2) algebra,

[Sa, Sb] = iǫabcSc (51)

where a, b, c = 1, 2, 3.
The simplest physical problem involving spin is the coupling to an external

magnetic field ~B through the Zeeman interaction

HZeeman = µ ~B · ~S (52)

where µ is the Zeeman coupling constant ( i.e., the product of the Bohr mag-
neton and the gyromagnetic factor).

Let us denote by |0〉 the highest weight state |S, S〉. Let us define the spin
raising and lowering operators S±,

S± = S1 ± iS2 (53)

The highest weight state |0〉 is annihilated by S+,

S+|0〉 = S+|S, S〉 = 0 (54)

Clearly, we also have

~S2|0〉 = S(S + 1)|0〉
S3|0〉 = S|0〉

(55)

Let us consider now the state |~n〉 ,

|~n〉 = eiθ(~n0 × ~n · ~S |0〉 (56)

where ~n is a three-dimensional unit vector (~n2 = 1), ~n0 is a unit vector pointing
along the direction of the quantization axis (i.e., the “North Pole” of the unit
sphere) and θ is the colatitude, (see Fig. 2)

~n · ~n0 = cos θ (57)
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noxn

θ ~n
~n0

Figure 1:

As we will see the state |~n〉 is a coherent spin state which represents a spin
polarized along the ~n axis. The state |~n〉 can be expanded in the basis |S,M〉,

|~n〉 =
S
∑

M=−S

D
(S)
MS(~n) |S,M〉 (58)

Here D
(S)
MS(~n) are the representation matrices in the spin-S representation.

It is important to note that there are many rotations that lead to the same
state |~n〉 from the highest weight |0〉. For example any rotation along the di-
rection ~n results only in a change in the phase of the state |~n〉. These rotations
are equivalent to a multiplication on the right by a rotation about the z axis.
However, in Quantum Mechanics this phase has no physically observable conse-
quence. Hence we will regard all of these states as being physically equivalent.
In other terms, the states for equivalence classes (or rays) and we must pick
one and only one state from each class. These rotations are generated by S3,
the (only) diagonal generator of SU(2). Hence, the physical states are not in
one-to-one correspondence with the elements of SU(2) but instead with the el-
ements of the right coset SU(2)/U(1), with the U(1) generated by S3. (In the
case of a more general group we must divide out the Maximal Torus generated
by all the diagonal generators of the group.) In mathematical language, if we
consider all the rotations at once , the spin coherent states are said to form a
Hermitian line bundle.

A consequence of these observations is that the D matrices do not form a
group under matrix multiplication. Instead they satisfy

D(S)(~n1)D
(S)(~n2) = D(S)(~n3) e

iΦ(~n1, ~n2, ~n3)S3 (59)

where the phase factor is usually called a cocycle. Here Φ(~n1, ~n2, ~n3) is the
(oriented) area of the spherical triangle with vertices at ~n1, ~n2, ~n3. However,
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since the sphere is a closed surface, which area do we actually mean? “Inside”
or “outsider”? Thus, the phase factor is ambiguous by an amount determined
by 4π, the total area of the sphere,

ei4πM (60)

However, since M is either an integer or a half-integer this ambiguity in Φ has
no consequence whatsoever,

ei4πM = 1 (61)

(we can also regard this result as a requirement that M be quantized).

~n1 ~n2

~n3

Figure 2:

The states |~n〉 are coherent states which satisfy the following properties (see
Perelomov’s book Coherent States). The overlap of two coherent states |~n1〉 and
|~n2〉 is

〈~n1|~n2〉= 〈0|D(S)(~n1)
†D(S)(~n2)|0〉

= 〈0|D(S)(~n0)e
iΦ(~n1, ~n2, ~n0)S3 |0〉

=

(

1 + ~n1 · ~n2

2

)S

eiΦ(~n1, ~n2, ~n0)S

(62)

The (diagonal) matrix element of the spin operator is

〈~n|~S|~n〉 = S ~n (63)

Finally, the (over-complete) set of coherent states {|~n〉} have a resolution of the
identity of the form

Î =

∫

dµ(~n) |~n〉〈~n| (64)
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where the integration measure dµ(~n) is

dµ(~n) =

(

2S + 1

4π

)

δ(~n2 − 1)d3n (65)

Let us now use the coherent states {|~n〉} to find the path integral for a spin.
In imaginary time τ (and with periodic boundary conditions) the path integral
is simply the partition function

Z = tre−βH (66)

where β = 1/T (T is the temperature) and H is the Hamiltonian. As usual
the path integral form of the partition function is found by splitting up the
imaginary time interval 0 ≤ τ ≤ β in Nτ steps each of length δτ such that
Nτδτ = β. Hence we have

Z = lim
Nτ→∞,δτ→0

tr
(

e−δτH
)Nτ

(67)

and insert the resolution of the identity at every intermediate time step,

Z = lim
Nτ→∞,δτ→0





Nτ
∏

j=1

∫

dµ(~nj)









Nτ
∏

j=1

〈~n(τj)|e−δτH |~n(τj+1)〉





≃ lim
Nτ→∞,δτ→0





Nτ
∏

j=1

∫

dµ(~nj)









Nτ
∏

j=1

[〈~n(τj)|~n(τj+1)〉 − δτ〈~n(τj)|H |~n(τj+1)〉]





(68)

However, since

〈~n(τj)|H |~n(τj+1)〉
〈~n(τj)|~n(τj+1)〉

≃ 〈~n(τj)|H |~n(τj)〉 = µS ~B · ~n(τj) (69)

and

〈~n(τj)|~n(τj+1)〉 =
(

1 + ~n(τj) · ~n(τj+1)

2

)S

eiΦ(~n(τj), ~n(τj+1), ~n0)S (70)

we can write the partition function in the form

Z = lim
Nτ→∞,δτ→0

∫

D~n e−SE[~n] (71)

where SE [~n] is given by

−SE [~n] = iS

Nτ
∑

j=1

Φ(~n(τj), ~n(τj+1), ~n0)

+S

Nτ
∑

j=1

ln

(

1 + ~n(τj) · ~n(τj+1)

2

)

−
Nτ
∑

j=1

(δτ)µS ~n(τj) · ~B

(72)
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The first term of the r. h. s. of Eq. 82 contains the expression Φ(~n(τj), ~n(τj+1), ~n0)
which has a simple geometric interpretation: it is the sum of the areas of the Nτ

contiguous spherical triangles. These triangles have the pole ~n0 as a common
vertex, and their other pairs of vertices trace a spherical polygon with vertices at
{~n(τj)}. In the time continuum limit this spherical polygon becomes the history
of the spin, which traces a closed oriented curve Γ = {~n(τ)} (with 0 ≤ τ ≤ β).
Let us denote by Ω+ the region of the sphere whose boundary is Γ and which
contains the pole ~n0. The complement of this region is Ω− and it contains the
opposite pole −~n0. Hence we find that

lim
Nτ→∞,δτ→0

Φ(~n(τj), ~n(τj+1), ~n0) = A[Ω+] = 4π −A[Ω−] (73)

where A[Ω] is the area of the region Ω. Once again, the ambiguity of the area
leads to the requirement that S should be an integer or a half-integer.

~n(τj)

~n0

~n(τj+1

Ω+

Ω−

Figure 3:

There is a simple an elegant way to write the area enclosed by Γ. Let ~n(τ) be
a history and Γ be the set of points o the 2-sphere traced by ~n(τ) for 0 ≤ τ ≤ β.
Let us define ~n(τ, s) (with 0 ≤ s ≤ 1) to be an arbitrary extension of ~n(τ) from
the curve Γ to the interior of the upper cap Ω+, such that

~n(τ, 0) = ~n(τ)

~n(τ, 1) = ~n0

~n(τ, 0) = ~n(τ + β, 0)

(74)

Then the area can be written in the compact form

A[Ω+] =

∫ 1

0

ds

∫ β

0

dτ ~n(τ, s) · ∂τ~n(τ, s)× ∂s~n(τ, s) ≡ SWZ[~n] (75)
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In Mathematics this expression for the area is called the (simplectic) 2-form,
and in the Physics literature is usually called a Wess-Zumino action, SWZ, or
Berry’s Phase.

Φ = 4πS
Total Flux

Figure 4: A hairy ball or monopole

Thus, in the (formal) time continuum limit, the action SE becomes

SE = −iS SWZ[~n] +
Sδτ

2

∫ β

0

dτ (∂τ~n(τ))
2
+

∫ β

0

dτ µS ~B · ~n(τ) (76)

Notice that we have kept (temporarily) a term of order δτ , which we will drop
shortly.

How do we interpret Eq. 76 ? Since ~n(τ) is constrained to be a point on the
surface of the unit sphere, i.e., ~n2 = 1, the action SE [~n] can be interpreted as
the action of a particle of mass M = Sδτ → 0 and ~n(τ) is the position vector
of the particle at (imaginary) time τ . Thus, the second term is a (vanishingly
small) kinetic energy term, and the last term of Eq. (76) is a potential energy
term.

What is the meaning of the first term? In Eq. (75) we saw that SWZ[~n], the
the so-called Wess-Zumino or Berry phase term in the action, is the area of the
(positively oriented) region A[Ω+] “enclosed” by the “path” ~n(τ). In fact,

SWZ[~n] =

∫ 1

0

ds

∫ β

0

dτ~n · ∂τ~n× ∂s~n (77)

is the area of the oriented surface Ω+ whose boundary is the oriented path
Γ = ∂Ω+ (see Fig. 3). Using Stokes Theorem we can write the the expression

SA[~n] as the circulation of a vector field ~A[~n],

∮

∂Ω

d~n · ~A[~n(τ)] =
∫∫

Ω+

d~S · ~∇~n × ~A[~n(τ)] (78)
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provided the “magnetic field” ~∇~n × ~A is “constant”, namely

~B = ~∇~n × ~A[~(τ)] = S ~n(τ) (79)

What is the total flux Φ of this magnetic field?

Φ =

∫

sphere

d~S · ~∇~n × ~A[~n]

= S

∫

d~S · ~n ≡ 4πS (80)

Thus, the total number of flux quanta Nφ piercing the unit sphere is

Nφ =
Φ

2π
= 2S = magnetic charge (81)

We reach the condition that the magnetic charge is quantized, a result known
as the Dirac quantization condition.

Is this result consistent with what we know about charged particles in mag-
netic fields? In particular, how is this result related to the physics of spin? To
answer these questions we will go back to real time and write the action

S[~n] =
∫ T

0

dt

[

M

2

(

d~n

dt

)2

+ ~A[~n(t)] · d~n
dt

− µS~n(t) · ~B
]

(82)

with the constraint ~n 2 = 1 and where the limit M → 0 is implied.
The classical hamiltonian associated to the action of Eq. (82) is

H =
1

2M

[

~n×
(

~p− ~A[~n]
)]2

+ µS~n · ~B ≡ H0 + µS~n · ~B (83)

It is easy to check that the vector ~Λ,

~Λ = ~n×
(

~p− ~A
)

(84)

satisfies the algebra
[Λa,Λb] = i~ǫabc (Λc − ~Snc) (85)

where a, b, c = 1, 2, 3, ǫabc is the (third rank) Levi-Civita tensor, and with

~Λ · ~n = ~n · ~Λ = 0 (86)

the generators of rotations for this system are

~L = ~Λ + ~S~n (87)

The operators ~L and ~Λ satisfy the (joint) algebra

[La, Lb] = −i~ǫabcLs

[

La, ~L
2
]

= 0

[La, nb] = i~ǫabcnc [La,Λb] = i~ǫabcΛc

(88)
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Hence
[

La, ~Λ
2
]

= 0 ⇒ [La, H ] = 0 (89)

since the operators La satisfy the angular momentum algebra, we can diagonal-
ize ~L2 and L3 simultaneously. Let |m, ℓ〉 be the simultaneous eigenstates of ~L2

and L3,

~L2|m, ℓ〉 = ~
2ℓ(ℓ+ 1)|m, ℓ〉 (90)

L3|m, ℓ〉 = ~m|m, ℓ〉 (91)

H0|m, ℓ〉 =
~
2

2MR2

(

ℓ(ℓ+ 1)− S

2S

)

|m, ℓ〉 (92)

where R = 1 is the radius of the sphere. The eigenvalues ℓ are of the form
ℓ = S + n, |m| ≤ ℓ, with n ∈ Z

+ ∪ {0} and 2S ∈ Z
+ ∪ {0}. Hence each level is

2ℓ+1-fold degenerate, or what is equivalent, 2n+1+2S-fold degenerate. Then,
we get

~Λ 2 = ~L 2 − ~n 2
~
2S2 = ~L 2 − ~

2S2 (93)

Since M = Sδt → 0, the lowest energy in the spectrum of H0 are those with
the smallest value of ℓ, i. e. states with n = 0 and ℓ = S. The degeneracy of
this ”Landau” level is 2S + 1, and the gap to the next excited states diverges
as M → 0. Thus, in the M → 0 limit, the lowest energy states have the same
degeneracy as the spin-S representation. Moreover, the operators ~L 2 and L3

become the corresponding spin operators. thus, the equivalency found is indeed
correct.

Thus, we have shown that the quantum states of a scalar (non-relativistic)
particle bound to a magnetic monopole of magnetic charge 2S, obeying the Dirac
quantization condition, are identical to those of those of a spinning particle!

We close this section with some observations on the semi-classical motion.
From the (real time) action (already in the M → 0 limit)

S = −
∫ T

0

dt µS ~n · ~B + S

∫ T

0

dt

∫ 1

0

ds ~n · ∂t~n× ∂s~n (94)

we can derive a Classical Equation of Motion by looking at the stationary con-
figurations. The variation of the second term in Eq. (94) is

δS = S δ

∫ T

0

dt

∫ 1

0

ds ~n · ∂t~n× ∂s~n = S

∫ T

0

dtδ~n(t) · ~n(t)× ∂t~n(t) (95)

the variation of the first term in Eq. (94) is

δ

∫ T

0

dt µS~n(t) · ~B =

∫ T

0

dt δn(t) · µS ~B (96)

Hence,

δS =

∫ T

0

dt δ~n(t) ·
(

−µS ~B + S~n(t)× ∂t~n(t)
)

(97)
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which implies that the classical trajectories must satisfy the equation of motion

µ~B = ~n× ∂t~n (98)

If we now use the vector identity

~n× ~n× ∂t~n = (~n · ∂t~n)~n− ~n 2∂t~n (99)

and
~n · ∂t~n = 0, and ~n 2 = 1 (100)

we get the classical equation of motion

∂t~n = µ~B × ~n (101)

Therefore, the classical motion is precessional with an angular velocity ~Ωpr =

µ~B.
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