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Professor Eduardo Fradkin

Problem Set No. 1: Classical Field Theory
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US CDT

1 The Dirac Equation

1. Use the Dirac equation to show that the 4-current jµ = ψ̄γµψ is conserved.

2. Show that if ψ is a 4-spinor which satisfies the Dirac equation, then ψ also
satisfies the Klein-Gordon equation.

3. Verify that the following identities hold

(a)
/A/B = A ·B − iσµνA

µBν

where Aµ and Bν are two arbitrary 4-vectors.

(b)
tr /A/B = 4 A ·B

(c)
γλγµγλ = −2γµ

Here we used Feynman’s slashed notation, meaning that if aµ is a 4-vector
then /a ≡ γµaµ.

2 Transformation Properties of Field Bilinears

in the Dirac Theory

In this problem you will consider again the Dirac Theory and study the trans-
formation properties of its physical observable under Lorentz transformations.
Let

x′µ = Λµ
ν x

ν

be a general Lorentz transformation, and S(Λ) be the induced transformation
for the Dirac spinors ψa(x) (with a = 1, . . . , 4):

ψ′

a(x
′) = S(Λ)ab ψb(x)

Verify that the following Dirac bilinears listed below obey the following trans-
formation laws:

1



1.
ψ̄′(x′ ) ψ′(x′ ) = ψ̄(x) ψ(x)

2.
ψ̄′(x′ ) γ5 ψ

′(x′ ) = detΛψ̄(x) γ5 ψ(x)

3.
ψ̄′(x′ ) γµ ψ′(x′ ) = Λµ

ν ψ̄(x) γ
ν ψ(x)

4.
ψ̄′(x′ ) γ5γ

µ ψ′(x′ ) = detΛ Λµ
ν ψ̄(x) γ5γ

ν ψ(x)

5.
ψ̄′(x′ ) σµν ψ′(x′ ) = Λµ

α Λν
β ψ̄(x) σ

αβ ψ(x)

where Λµ
ν is a Lorentz transformation and detΛ is its determinant.

3 Chiral Symmetry

We will consider the Dirac equation

(

i/∂ −m
)

ψ = 0

but, this time, in the chiral representation for the Dirac γ-matrices, i.e.

γ0 = −σ1 ⊗ I =

(

0 −I
−I 0

)

γ = iσ2 ⊗ σ =

(

0 σ

−σ 0

)

γ5 = γ5 =

(

I 0
0 −I

)

σ0i = i

(

σi 0
0 −σi

)

σij = ǫijk
(

σk 0
0 σk

)

where σi are the three Pauli matrices and I is the 2× 2 identity matrix. Recall
the definition of the matrix γ5 = iγ0γ1γ2γ3. Here a symbol in boldface is a
3-vector, i.e. a = (a1, a2, a3).

1. Using the Dirac matrices in the Chiral representation, write down the
Dirac equation in terms of the 2-spinors φ and χ, where

ψ =

(

φ
χ

)
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2. Show that if the excitations have zero mass (i.e. m = 0) the Dirac equa-
tion, written in the chiral basis, decouples into two 2× 2 equations. Find
the plane wave solutions of these equations and calculate their disper-
sion law (i.e. energy-momentum relation). Assign a chirality γ5 quantum
number to each solution.

3. Consider now the chiral transformation (CT)

ψ′ = eiγ5θ ψ

where θ is a constant phase (defined mod 2π).

(a) Find how the 2-spinors φ and χ transform under a CT.

(b) Find how ψ̄ transforms under a CT.

(c) Find the transformation laws under a CT of the bilinears for the
Dirac mass ψ̄ψ and the current ψ̄γµψ.

(d) Is the Dirac equation invariant under a CT if m 6= 0? Find the form
of the Dirac equation, in terms of 4-spinors ψ, after a CT with angle
θ has been carried out. What new terms do you find?

4 The Landau Theory of Phase Transitions as a

Classical Field Theory

In the Landau-Ginzburg approach to the theory of phase transitions, the ther-
modynamic properties of a one-component classical ferromagnet in thermal
equilibrium are described by a free energy functional of an order-parameter
field φ(x) ( the local magnetization). This functional contains, in addition to
gradient terms, contributions proportional to various powers of the local order
parameter. Under some circumstances the coefficient λ of the φ4 term of the
energy functional may become negative. This is what happens if the local mag-
netic moments have spin-1 rather the spin- 1

2
. In this case, we have to include,

in the energy functional, a term with a higher power of φ, such as φ6, in order
to insure the thermodynamic stability of the system.

The (free) energy density E for this system has the form

E =
1

2
(▽φ(x))2 + U(φ(x))

where the potential U(φ(x)) is

U(φ(x)) =
m2

0

2
φ2(x) +

λ4
4!
φ4(x) +

λ6
6!
φ6(x).

with m2
0 = a(T − T0) and λ4 < 0, λ6 > 0.

1. Use a variational principle to derive the saddle-point equations (i.e. the
Landau-Ginzburg equations) for this system.
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2. Plot the potential U(φ) for a constant field φ̄ for λ4 < 0 ( and fixed) at
several temperatures. Show that, as the temperature T is lowered, there
exists a temperature T ∗ > T0 at which the state with lowest energy has
〈φ〉 6= 0 (for fixed λ4 < 0 and λ6 > 0). Plot the qualitative behavior of
〈φ〉 as a function of T . Is this a continuous function? Is this a first order
or a second order transition? Find the value of the energy of the system
in the ordered state.

3. Consider now the case λ4 > 0 and show that the transition now takes
place at T0. Plot the qualitative behavior of 〈φ〉 as a function of T for this
case. Is this a continuous function? Is this a first order or a second order
transition?

4. Collect your results of the previous sections in the form of a plot of λ4 as
a function of T − T0. Indicate on the graph in which areas is the system
ordered and in which ones it is disordered. Indicate where is the transition
first order and where it is second order. Find an analytic expression for
the phase boundary, the curve that separates the ordered and disordered
states.

5 Scalar Electrodynamics

The dynamics of a charged ( complex) scalar field φ(x) coupled to the electro-
magnetic field Aµ(x) is governed by the Lagrangian density L

L = (Dµφ(x))
∗

(Dµφ(x)) −m2

0|φ(x)|
2 −

λ

2

(

|φ(x)|2
)2

−
1

4
FµνFµν

where Dµ is the covariant derivative

Dµ ≡ ∂µ + ieAµ

e is the electric charge and ∗ denotes complex conjugation.

1. Show that this Lagrangian density is invariant under the local gauge trans-
formations

φ′(x) = φ(x) e−ieΛ(x)

φ′∗(x) = φ∗(x) e+ieΛ(x)

A′

µ(x) = Aµ(x) + ∂µΛ(x)

2. Derive the classical equations of motion in a manifestly relativistically
covariant form.

3. Find the Hamiltonian density for this system.
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4. Write the complex field φ(x) in its polar components

φ(x) = ρ(x) eiθ(x)

and find the equations of motion obeyed by the real fields ρ and θ. Write
these equations of motion in the gauge θ = 0, known as the London or
Unitary gauge. Find the Lagrangian for the field ρ.

5. Show that, if m2

0 < 0, the equation of motion for the field ρ in the London
gauge (derived above) has a solution with ρ = ρ̄ = constant > 0. Freeze
the amplitude field ρ at the value ρ̄, and find the effective Lagrangian
for the remaining degrees of freedom, the gauge field Aµ. Show that
this Lagrangian has a term which is quadratic in Aµ and calculate its
coefficient. By solving the equations of motion for Aµ (derived from this
effective Lagrangian) show that the coefficient of this quadratic term can
be interpreted as a photon mass. What are the physical consequences of
the photon being massive? Note: This phenomenon is known as the Higgs
mechanism. In the superconductivity this is the Meissner effect. This
theory represents a system in a superconducting state.
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