Physics 582, Fall Semester 2023 Professor Eduardo Fradkin

Problem Set No. 2:

Symmetries and Conservation Laws Due Date: Friday September 22, 2023, 9:00 pm US Central Time

Here you will look again at problem 5 of Problem Set 1 in which you studied some of the properties of the dynamics of a *charged* (complex) scalar field $\phi(x)$ coupled to the electromagnetic field $A_{\mu}(x)$. Recall that the Lagrangian density \mathcal{L} for this system is

$$\mathcal{L} = (D_{\mu}\phi(x))^* (D^{\mu}\phi(x)) - m_0^2 |\phi(x)|^2 - \frac{\lambda}{2} (|\phi(x)|^2)^2 - \frac{1}{4} F^{\mu\nu} F_{\mu\nu}$$
 (1)

where D_{μ} is the covariant derivative

$$D_{\mu} \equiv \partial_{\mu} + ieA_{\mu} \tag{2}$$

e is the electric charge and * denotes complex conjugation. In this problem set you will determine several important properties of this field theory at the classical level.

1. Derive an expression for the locally conserved current $j_{\mu}(x)$, associated with the global symmetry

$$\phi(x) \to \phi'(x) = e^{i\theta}\phi(x)$$

$$\phi^*(x) \to \phi'^*(x) = e^{-i\theta}\phi^*(x)$$

$$A_{\mu}(x) \to A'_{\mu}(x) = A_{\mu}(x)$$
(3)

in terms of the fields of the theory.

- 2. Show that the conservation of the current j_{μ} implies the existence of a constant of motion. Find an explicit form for this constant of motion.
- 3. Consider now the case of the local (gauge) transformation

$$\phi(x) \to \phi'(x) = e^{i\theta(x)}\phi(x)$$

$$\phi^*(x) \to \phi'^*(x) = e^{-i\theta(x)}\phi^*(x)$$

$$A_{\mu}(x) \to A'_{\mu}(x) = A_{\mu}(x) + \partial_{\mu}\Lambda(x)$$
(4)

where $\theta(x)$ and $\Lambda(x)$ are two functions. What should be the relation between $\theta(x)$ and $\Lambda(x)$ for this transformation to be a symmetry of the Lagrangian of the system?

- 4. Show that, if the system has the local symmetry of the previous section, there is a locally conserved gauge current $J_{\mu}(x)$. Find an explicit expression for J_{μ} and discuss in which way it is different from the current j_{μ} of item 1). Find an explicit expression for the associated constant of motion and discuss its physical meaning.
- 5. Find the Energy-Momentum $T^{\mu\nu}$ tensor for this system. Show that it can be written as the sum of two terms

$$T^{\mu\nu} = T^{\mu\nu}(A) + T^{\mu\nu}(\phi, A) \tag{5}$$

where $T^{\mu\nu}(A)$ is the energy-momentum tensor for the free electromagnetic field and $T^{\mu\nu}(\phi, A)$ is the tensor which results by modifying the energy-momentum tensor for the decoupled complex scalar field ϕ by the *minimal coupling* procedure.

- 6. Find explicit expressions for the Hamiltonian density $\mathcal{H}(x)$ and the linear momentum density $\mathcal{P}(x)$ for this system. Give a physical interpretation for all of the terms that you found for each quantity.
- 7. Consider now the case of an infinitesimal Lorentz transformation

$$x_{\mu} \to x_{\mu}' + \omega_{\mu\nu} x^{\nu} \tag{6}$$

where $\omega_{\mu\nu}$ infinitesimal and antisymmetric. Show that the invariance of the Lagrangian of this system under these Lorentz transformation leads to the existence of a conserved tensor $M_{\mu\nu\lambda}$. Find the explicit form of this tensor. Give a physical interpretation for its *spacial* components. Does the conservation of this tensor impose any restriction on the properties of the energy-momentum tensor $T^{\mu\nu}$? Explain.

Warning: Be very careful in how you treat the fields. Recall that *not all* of the fields are scalars!

8. In this section yo will consider again the same system but in a *polar* representation for the scalar field ϕ , i.e.

$$\phi(x) = \rho(x) e^{i\omega(x)} \tag{7}$$

In problem set 1, problem 2, you showed that for $m_0^2 < 0$ the lowest energy states of the system can be well approximated by freezing the amplitude mode ρ to a constant value ρ_0 which you obtained by an energy minimization argument. In this section you are asked to find the form of

- (a) the conserved gauge current J_{μ} ,
- (b) the total energy H,
- (c) the total linear momentum P in this limit.

9. Consider now the analytic continuation to imaginary time of this theory. Find the energy functional of the equivalent system in classical statistical mechanics. Give a physical interpretation for each of the terms of this energy functional. If D is the dimensionality of space-time for the original system, what is the dimensionality of space for the equivalent classical problem?.

Warning: Be very careful in the way you perform the analytic continuation of the components of the vector potential.