
Physics 582, Fall Semester 2023

Professor Eduardo Fradkin

Problem Set No. 5:

Due Date: Sunday November 12, 2023, 9:00 pm

US Central Time

1 Fermions in one dimension

In this problem we will consider an application of the Dirac theory to a problem
in condensed matter physics: polyacetylene. Polyacetylene is a long polymer
chain of the type (CH)n. The motion of the conduction electrons in polyacety-
lene can be described by the following model due to Su, Schrieffer and Heeger.
In this model, one considers a linear chain of carbon atoms (C) with classical
equilibrium positions at the regularly spaced sites {x(n)|x(n) = n a0} (where
a0 is the lattice constant). The carbon atoms share their π-orbital electrons,
one per carbon atom. These electrons are allowed to hop from site to site. This
hopping process is modulated by the lattice vibrations. Since the massM of the
atoms is much larger than the mass of the electrons (or, what is the same, the
tunneling hopping (kinetic) energy t of the electrons is much larger than the
kinetic energy of the atoms), we can give an approximate description by treat-
ing the atoms classically while treating the electrons as quantum mechanical
objects. The Hamiltonian , for a lattice with N (even) sites, is

H = −
N

2
∑

n=−N

2
+1

∑

σ=↑,↓
[t− α (x(n) − x(n+ 1))]

[

c†σ(n)cσ(n+ 1) + h.c.
]

+

N

2
∑

n=−N

2
+1

[

P 2
n

2M
+
D

2
(x(n)− x(n+ 1))

2

]

(1)

where c†σ(n) and cσ(n) are fermion operators which create and destroy a π-
electron with spin σ at the nth site of the chain, the x(n)’s are the coordi-
nates of the carbon atoms (measured from their classical equilibrium positions),
P (n) are their momenta, M is the carbon mass, D is the elastic constant, t is
the electron hopping matrix element (for the undistorted lattice) and α is the
electron-phonon coupling constant. Polyacetylene has one electron per carbon
atom and, hence, it is a half-filled system and there are N electrons in a chain
with N atoms.

The study of this problem is greatly simplified by considering a continuum
version of the model. If the coupling constant α is not too large, the only
physical processes which are important are those which mix nearly degenerate
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states, i.e. the only electronic states that will matter are those within a narrow
band of width 2Ec centered at the Fermi energy EF = 0. In this limit, the
single particle dispersion law becomes E(p) ≈ vF (p ± pF ). These states are
right moving electrons ( with p ≈ pF ) and left moving electrons ( with ≈ −pF ).
Here vF is the Fermi velocity. These considerations motivate the following way
of writing the electron operators

cσ(n) = eipFn Rσ(n) + e−ipFn Lσ(n) (2)

Likewise, since the only processes in which phonons mix electrons near ±pF
have momentum q ≈ 0 (forward scattering) or q ≈ 2pF (backward scattering),
it is also natural to split the phonon fields into two terms

x(n) = δ(n) + e2ipFn ∆+(n) + e−2ipFn ∆−(n) (3)

where pF = π
2a0

.
Within this set of approximations, it is natural to write an effective contin-

uum Hamiltonian which only involves the left and right moving fermions and
the phonons with p ≈ π

a0

. After Fourier transforming back to position space we
get

H =
∑

σ=↑,↓

∫

dx ψ†
σ(x)

(

−ivF
∂

∂x

)

σ3 ψσ(x)

+

∫

dx

[

Π2(x)

8Ma20
+

1

2
∆2(x)

]

+
∑

σ=↑,↓

∫

dx
√

2g∆(x) ψ̄σ(x)ψσ(x) (4)

where the two-component spinor ψσ(x)

ψσ(x) ≡
(

Rσ(x)
Lσ(x)

)

(5)

is a Fermi field which represents the right and left moving electrons close to the
Fermi energy. They obey the equal-time canonical anticommutation relations

{

ψσα(x), ψ
†
σ′α′(x

′)
}

= δσσ′δαα′δ(x− x′) (6)

while all other anticommutators are zero. Here the label α = 1 indicates upper
(or right moving) component and α = 2 indicates the lower (or left moving)
component. These fields differ from the ones we used above by a factor of 1/

√
2a0

which gives these fields units of length−1/2. The Bose field ∆(x) represents
lattice vibrations with momentum close to 2pF . Thus, ∆(x) represents small
fluctuations around a staggered distortion of the position of the atoms, Π(x) is
the phonon canonical momentum and ∆ and Π obey canonical commutation
relations

[∆(x),Π(y)] = iδ(x− y)
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The matrix σ3 is the 2× 2 Pauli matrix

(

1 0
0 −1

)

Notice that, in this approx-

imation, the electrons are effectively a relativistic Dirac field with “speed of
light” equal to the Fermi velocity. It is useful to define a set of 2 × 2 “Dirac”
matrices,

γ0 = σ2 =

(

0 −i
i 0

)

, γ1 = iσ1 =

(

0 i
i 0

)

, γ5 = γ0γ1 = σ3

We will also use the notation ψ̄ = ψ†γ0 = ψ†σ2. The new effective electron-
phonon coupling constant is g = α√

tD
.

1. Consider the limit in which the mass of the carbon atoms is very heavy
(M → ∞). In this adiabatic limit the phonon kinetic energy term of the
effective Hamiltonian of Eq.(2) can be neglected and the phonon coordi-
nates ∆(x) become classical variables. Find the ground state vector |gnd〉
and energy of the system in this limit by calculating the ( constant) value
of ∆ for which the ground state energy is minimized. You will have to
cutoff some of the integrals at a relative momenta ±Ec/pF .
Note: The spontaneous staggered distortion of the lattice is known as
dimerization and this phenomenon is called the Peierls Instability.

2. Determine the energy spectrum and quantum numbers of the single-particle
electronic states in this approximation.

3. Show that the continuum Hamiltonian (and the associated Lagrangian) is
invariant under the global discrete symmetry transformation

ψ(x) → γ5ψ(x), ∆(x) → −∆(x) (7)

with γ5 = σ3. Show that, in terms of the lattice model, this transformation
amounts to a shift of all the fields by one lattice site. In that language, the
symmetry corresponds to an ambiguity in the way the dimerized structure
is placed on the lattice Show that the operator ψ̄σ(x)ψσ(x) is odd under
the discrete symmetry and, hence, it is an order parameter.

4. Compute the ground state expectation value for the order parameter of
the previous section

∑

σ

〈gnd|ψ̄σ(x)ψσ(x)|gnd〉 (8)

in the M → ∞ approximation. Show that this order parameter has non-
vanishing expectation value only is ∆ 6= 0 and establish a connection
between both quantities.
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2 Grassmann Stuff

1. Let a and a∗ be a pair of Grassmann variables. Let g(a∗) be an ”analytic
function” of a single Grassmann variable a∗, i.e.

g(a∗) = g0 + g1a
∗ (9)

and let f(a) be another such function. Show that the inner product 〈f |g〉
defined by

〈f |g〉 =
∫

da∗da e−a∗af∗(a)g(a∗) (10)

implies that
〈f |g〉 = f̄0g0 + f̄1g1 (11)

where x̄ stands for the complex conjugate of x.

2. Show that

(Af)(a∗) =

∫

dα∗dαA(a∗, α)f(α∗)e−α∗α = g(a∗) (12)

is equivalent to
(

g0
g1

)

=

(

A00 A10

A01 A11

)(

f0
f1

)

(13)

and that

(A B) (a∗, a) =

∫

dα∗dα e−α∗α A(a∗, α) B(α∗, a) = C(a∗, a) (14)

is equivalent to the standard definition of the product of two 2×2 matrices.

3. Show that the operators â∗ and â, defined by

â∗f(α∗) = a∗f(a∗) âf(a∗) =
d

da∗
f(a∗) (15)

satisfy canonical anticommutation relations,i.e. â∗ â∗ = â â = 0 and
{â∗, â} = 1.

4. Show that, if {ξj} is a set of N Grassmann variables (j = 1, . . . , N), then

Z =

∫ N
∏

j=1

dξ∗j dξj exp{−
N
∑

k,l=1

ξ∗kMklξl} = detM (16)

3 Dirac Fermions

The Lagrangian density L for the free massive Dirac field in 4-dimensional
Minkowski space is

L = ψ̄
(

i/∂ −m
)

ψ (17)
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1. Consider the path integral for a free Dirac field in four space-time dimen-
sions, coupled to a set of Grassmann sources η̄α(x) and ηα(x). Derive
an expression for this generating function in terms of the sources and a
Fermion determinant. Do not compute the determinant.

2. Use the results of previous question to show that the Feynman propagator
of the Dirac theory is given by

Sαβ
F (x− y) = 〈x, α| 1

i/∂ −m
|y, β〉 (18)

3. Use the results of the first part of this problem to derive an expression for
the four point function

S
(4)
F (x1, x2, x3, x4)α,β,γ,δ = 〈0|ψα(x1)ψβ(x2)ψ̄γ(x3)ψ̄δ(x4)|0〉 (19)

in terms of products of propagators. Beware of the signs!!!!!!

4 Functional Determinants and the Casimir Ef-

fect

In this problem we are going to consider a free scalar field φ(x, t) in 1 + 1
space-time dimensions. The Lagrangian density L is

L =
1

2
∂µφ(x)∂

µφ(x) − 1

2
m2φ(x)2 (20)

where x ≡ (x, t). Consider the case in which the total length of the system along
the space coordinate is equal to L and assume periodic boundary conditions, i.e.

φ(x, t) = φ(x + L, t) (21)

for all times t.

1. Calculate the classical value of the ground state energy of the system with
the boundary conditions specified above.

2. Use path integral methods to derive a formal expression for the total
ground state energy density (i.e. energy per unit length). This formula
should contain a determinant which you should not compute for the mo-
ment.

3. Use the method of the ζ-function to compute the quantum correction to
the ground state energy density. Consider the massless limit m→ 0 only.
Write your answer down in the form of an extensive piece and a finite-size

term which vanishes as L → ∞ like A/Lη, with η > 0 . Find the value
of this exponent η as well as the value of the coefficient A, sign included.
Note: You may have to keep a dependence on the mass in one of the two
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terms. Keep just the leading behavior in the small mass limit. Note: At
some point of the calculation the following result may be useful:
Poisson Summation Formula:

∞
∑

n=−∞
f(n) =

∞
∑

m=−∞

∫ ∞

−∞
dx f(x) e2πimx (22)

4. If you interpret the dependence of the ground state energy on the linear
size of the system L as a potential energy for the“walls” that confine the
system, what can you say about the force that the zero-point fluctuations
exert on these “walls”.
Note: In order to speak about walls we should have used vanishing, in-
stead of periodic boundary conditions as we have done. The calculation is
somewhat more complicated in that case. This effect, i.e. a force exerted
on the walls of a system by the zero point motion of a field is known as
the Casimir effect.

5 The Weakly-Interacting Bose Gas

Consider a gas of non-relativistic Bose particles at fixed density ρ inside a very
large box of linear size L in three space dimensions. Let φ†(x) and φ(x) be a set
of boson creation and annihilation operators. The second quantized Hamiltonian
is

H =

∫

d3x φ†(x)

(

p̂
2

2m
− µ

)

φ(x)+
1

2

∫

d3x

∫

d3x′n̂(x)V (x−x
′)n̂(x′). (23)

where µ is the chemical potential, n̂ = φ†φ and V (r) is a rotationally invariant
short range interaction which we will take to be equal to

V (x− x
′) = λδ3(x− x

′) (24)

The positive constant λ is the scattering amplitude and will play the role of a
coupling constant for this system.

1. Use the method of Bose coherent states to find a path integral formula for
the partition function of this system at temperature T . Do not compute
the path integral at this stage. Assume constant boundary conditions
at spacial infinity (i.e. that the field amplitude approaches a constant
value at the boundaries). Carefully specify the boundary conditions in
the imaginary time dimension. Write your answer down in the form

Z =

∫

Dφ∗ Dφ e−SE(φ
∗, φ) (25)

and give an explicit expression for the Euclidean action SE .
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2. Use the method of semiclassical quantization (i.e. the saddle point expan-
sion) to determine the classical path at temperature T . What condition
should be satisfied by φ(x) in order for it to be such a classical path?.
Find the relationship between the ground state of the system at T = 0
and this classical path in the limit T → 0. Is the solution unique?. Justify
your answer.
Hint: Think of the symmetries of the Lagrangian. This will give you an
idea about the uniqueness of the classical path. You may find it conve-
nient to write the classical path φ(x) in the form of an amplitude times a
phase.

3. Compute the time-ordered Green function

G(x− y) = −i 〈T̂ φ̂(x)φ̂†(y)〉 (26)

at T = 0, in the semiclassical limit. What is the asymptotic value of G
in the limit of equal times and large space separation?. Give a physical
interpretation of this result.

4. Consider small quantum fluctuations around the classical path found in
the previous sections. Write an arbitrary (but close) configuration φ(x)
in the form

φ(x) =
√

ρ0 + δρ(x) eiθ(x) (27)

Expand the action in powers of δρ and θ up to second order in both. Check
the cancellation of the linear terms. Integrate out the density fluctuations
and find an effective action for the phase variable

e−Seff(θ(x)) =

∫

Dδρ e−SE (28)

which is quadratic in θ.

5. Show that, for configurations {θ(x)} which are slowly varying, the effective
action has the form

Seff =

∫

d4x
1

2
K

[

(∂τθ)
2
+ v2 (∇θ(x))

2
]

(29)

and calculate the coefficients K and v. Find the analytic continuation of
this expression back in real time. Show that v is the velocity of propagation
of the excitations. Find the time ordered propagator of the phase field
θ(x). What equation of motion does it satisfy?. Draw an analogy between
this equation and the equation of motion for a relativistic massless scalar
field.
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