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Classical Symmetries and Conservation Laws

We have used the existence of symmetries in a physical system as a guiding
principle for the construction of their Lagrangians and energy functionals.
We will show now that these symmetries imply the existence of conservation
laws.

There are different types of symmetries which, roughly, can be classi-
fied into two classes: (a) spacetime symmetries and (b) internal symmetries.
Some symmetries involve discrete operations, hence called discrete symme-
tries, while others are continuous symmetries. Furthermore, in some theories
these are global symmetries, while in others they are local symmetries. The
latter class of symmetries go under the name of gauge symmetries. We will
see that, in the fully quantized theory, global and local symmetries play
different roles.

Spacetime symmetries are the most common examples of symmetries that
are encountered in Physics. They include translation invariance and rotation
invariance. If the system is isolated, then time-translation is also a symme-
try. A non-relativistic system is in general invariant under Galilean trans-
formations, while relativistic systems, are instead Lorentz invariant. Other
spacetime symmetries include time-reversal (T ), parity (P ) and charge con-
jugation (C). These symmetries are discrete.

In classical mechanics, the existence of symmetries has important conse-
quences. Thus, translation invariance, which is a consequence of uniformity
of space, implies the conservation of the total momentum P of the system.
Similarly, isotropy implies the conservation of the total angular momentum L

and time translation invariance implies the conservation of the total energy
E.

All of these concepts have analogs in field theory. However, in field theory
new symmetries will also appear which do not have an analog in the classi-
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cal mechanics of particles. These are the internal symmetries, that will be
discussed below in detail.

3.1 Continuous symmetries and Noether’s theorem

We will show now that the existence of continuous symmetries has very
profound implications, such as the existence of conservation laws. One im-
portant feature of these conservation laws is the existence of locally conserved
currents. This is the content of the following theorem, due to Emmy Noether.

Noether’s theorem: For every continuous global symmetry there exists

a global conservation law.

Before we prove this statement, let us discuss the connection that exists
between locally conserved currents and constants of motion. In particular,
let us show that for every locally conserved current there exist a globally
conserved quantity, i.e. a constant of motion. To this effect, let j

µ(x) be
some locally conserved current, i.e. jµ(x) satisfies the local constraint

∂µj
µ(x) = 0 (3.1)

time

space

T

Ω

T +∆T

δΩ

V (T )

V (T +∆T )

Figure 3.1 A spacetime 4-volume.

Let Ω be a bounded 4-volume of spacetime, with boundary ∂Ω. Then, the
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Divergence (Gauss) theorem tells us that

0 = ∫
Ω
d
4
x ∂µj

µ(x) = ∮
∂Ω

dSµj
µ(x) (3.2)

where the r.h.s. is a surface integral on the oriented closed surface ∂Ω (a 3-
volume). Let us suppose that the 4-volume Ω extends all the way to infinity
in space and has a finite extent in time ∆T .

If there are no currents at spacial infinity, i.e. lim∣x∣→∞ j
µ(x, x0) = 0, then

only the top (at time T +∆T ) and the bottom (at time T ) of the boundary
∂Ω (shown in Fig. (3.1)) will contribute to the surface (boundary) integral.
Hence, the r.h.s. of Eq.(3.2) becomes

0 = ∫
V (T+∆T ) dS0 j

0(x, T +∆T ) − ∫
V (T ) dS0 j

0(x, T ) (3.3)

Since dS0 ≡ d
3
x, the boundary contributions reduce to two oriented 3-

volume integrals

0 = ∫
V (T+∆T ) d

3
x j

0(x, T +∆T ) − ∫
V (T ) d

3
x j

0(x, T ) (3.4)

Thus, the quantity Q(T )
Q(T ) ≡ ∫

V (T ) d
3
x j

0(x, T ) (3.5)

is a constant of motion, i.e.

Q(T +∆T ) = Q(T ) ∀ ∆T (3.6)

Hence, the existence of a locally conserved current, satisfying ∂µj
µ

= 0,
implies the existence of a globally conserved charge (or Noether charge)
Q = ∫ d

3
x j

0(x, T ), which is a constant of motion. Thus, the proof of the
Noether theorem reduces to proving the existence of a locally conserved
current. In the following sections we will prove Noether’s theorem for internal
and spacetime symmetries.

3.2 Internal symmetries

Let us begin, for simplicity, with the case of the complex scalar field φ(x) ≠
φ
∗(x). The arguments that follow below are easily generalized to other cases.

Let L(φ, ∂µφ,φ∗, ∂µφ∗) be the Lagrangian density. We will assume that
the Lagrangian is invariant under the continuous global internal symmetry
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transformation

φ(x) ↦φ′(x) = e
iα
φ(x)

φ
∗(x) ↦φ′∗(x) = e

−iα
φ
∗(x) (3.7)

where α is an arbitrary real number (not a function!). The system is invariant
under the transformation of Eq.(3.7) if the Lagrangian L satisfies

L(φ′, ∂µφ′,φ′∗, ∂µφ′∗) ≡ L(φ, ∂µφ,φ∗, ∂µφ∗) (3.8)

Then we say that the transformation shown in Eq.(3.7) is a global symmetry
of the system.

In particular, for an infinitesimal transformation we have

φ
′(x) = φ(x) + δφ(x) + . . . , φ

′∗(x) = φ
∗(x) + δφ∗(x) + . . . (3.9)

where δφ(x) = iαφ(x). Since L is invariant, its variation must be identically
equal to zero. The variation δL is

δL =
δL

δφ
δφ +

δL

δ∂µφ
δ∂µφ +

δL

δφ∗
δφ

∗
+

δL

δ∂µφ
∗ δ∂µφ

∗
(3.10)

Using the equation of motion

δL

δφ
− ∂µ ( δL

δ∂µφ
) = 0 (3.11)

and its complex conjugate, we can write the variation δL in the form of a
total divergence

δL = ∂µ [ δL

δ∂µφ
δφ +

δL

δ∂µφ
∗ δφ

∗] (3.12)

Thus, since δφ = iαφ and δφ∗ = −iαφ
∗, we get

δL = ∂µ [ i ( δL

δ∂µφ
φ −

δL

δ∂µφ
∗φ

∗)α] (3.13)

Hence, since α is arbitrary, δL will vanish identically if and only if the 4-
vector jµ, defined by

j
µ
= i( δL

δ∂µφ
φ −

δL

δ∂µφ
∗φ

∗) (3.14)

is locally conserved, i.e.

δL = 0 iff ∂µj
µ
= 0 (3.15)

In particular, if L has the form

L = (∂µφ)∗(∂µφ) − V (∣φ∣2) (3.16)
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which is manifestly invariant under the symmetry transformation of Eq.(3.7),
we see that the current jµ is given by

j
µ
= i (∂µφ∗φ − φ

∗
∂
µ
φ) ≡ iφ

∗←→
∂µφ (3.17)

Thus, the presence of a continuous internal symmetry implies the existence
of a locally conserved current.

Furthermore, the conserved charge Q is given by

Q = ∫ d
3
x j

0(x, x0) = ∫ d
3
x iφ

∗←→
∂0φ (3.18)

In terms of the canonical momentum Π(x), the globally conserved charge Q
of the charged scalar field is

Q = ∫ d
3
x i(φ∗Π − φΠ

∗) (3.19)

3.3 Global symmetries and group representations

Let us generalize the result of the last subsection. Let us consider a scalar
field φa which transforms irreducibly under a certain representation of a Lie
group G. In the case considered in the previous section the group G is the
group of complex numbers of unit length, the group U(1). The elements of
this group, g ∈ U(1), have the form g = e

iα.

R
S1

1

|z| = 1

Figure 3.2 The U(1) group is isomorphic to the unit circle while the real
numbers R are isomorphic to a tangent line.

This set of complex numbers forms a group in the sense that,
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1 . It is closed under complex multiplication, i.e.

g = e
iα

∈ U(1) and g
′
= e

iβ
∈ U(1) ⇒ g ∗ g

′
= e

i(α+β)
∈ U(1).

(3.20)

2 . There is an identity element, i.e. g = 1.

3 . For every element g = e
iα

∈ U(1) there is a unique inverse element
g
−1

= e
−iα

∈ U(1).
The elements of the group U(1) are in one-to-one correspondence with the

points of the unit circle S1. Consequently, the parameter α that labels the
transformation (or element of this group) is defined modulo 2π, and it should
be restricted to the interval (0, 2π]. On the other hand, transformations
infinitesimally close to the identity element, 1, lie essentially on the line
tangent to the circle at 1 and are isomorphic to the group of real numbers
R. The group U(1) is compact, in the sense that the length of the natural
parametrization of its elements is 2π, which is finite. In contrast, the group
R of real numbers is not compact (see Fig. (3.2)). In the sequel, we will
almost always work with internal symmetries with a compact Lie group.

For infinitesimal transformations the groups U(1) and R are essentially
identical. There are, however, field configurations for which they are not.
A typical case is the vortex configuration in two dimensions. For a vortex
the phase of the field on a large circle of radius R → ∞ winds by 2π. Such
configurations would not exist if the symmetry group was R instead of U(1)
(note that analyticity requires that φ→ 0 as x → 0.)

θ
φ = 0

φ = φ0

φ = φ0e
iθ

Figure 3.3 A vortex

Another example is the N -component real scalar field φ
a(x), with a =

1, . . . , N . In this case the symmetry is the group of rotations inN -dimensional
Euclidean space

φ
′a(x) = R

ab
φ
b(x) (3.21)
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The field φa is said to transform like the N -dimensional (vector) represen-
tation of the Orthogonal group O(N).

The elements of the orthogonal group, R ∈ O(N), satisfy
1 . If R1 ∈ O(N) and R2 ∈ O(N), then R1R2 ∈ O(N),
2 . ∃I ∈ O(N) such that ∀R ∈ O(N) then RI = IR = R,
3 . ∀R ∈ O(N) ∃R

−1
∈ O(N) such that R−1

= R
t,

where R
t is the transpose of the matrix R.

Similarly, if theN -component vector φa(x) is a complex field, it transforms
under the group of N ×N Unitary transformations U

φ
′a(x) = U

ab
φ
b(x) (3.22)

The complex N × N matrices U are elements of the Unitary group U(N)
and satisfy

1 . U1 ∈ U(N) and U2 ∈ U(N), then U1U2 ∈ U(N),
2 .∃I ∈ U(N) such that ∀U ∈ U(N), UI = IU = U ,
3 . ∀U ∈ U(N), ∃U−1

∈ U(N) such that U−1
= U

†, where U
†
= (U t)∗.

In the particular case discussed above φa transforms like the fundamental
(spinor) representation of U(N). If we impose the further restriction that∣detU ∣ = 1, the group becomes SU(N). For instance, if N = 2, the group
is SU(2) and

φ = ( φ1
φ2

) (3.23)

it transforms like the spin-1/2 representation of SU(2).
In general, for an arbitrary continuous Lie group G, the field transforms

like

φ
′
a(x) = (exp [iλkθk])

ab
φb(x) (3.24)

where the vector θ is arbitrary and constant (i.e. independent of x). The
matrices λk are a set of N × N linearly independent matrices which span
the algebra of the Lie group G. For a given Lie group G, the number of
such matrices is D(G), and it is independent of the dimension N of the
representation that was chosen. D(G) is called the rank of the group. The
matrices λkab are the generators of the group in this representation.

In general, from a symmetry point of view, the field φ does not have to
be a vector, as it can also be a tensor or for the matter transform under
any representation of the group. For simplicity, we will only consider the
case of the vector representation of O(N), and the fundamental (spinor)
and adjoint (vector) (see below) representations of SU(N).
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For an arbitrary compact Lie groupG, the generators {λj}, j = 1, . . . ,D(G),
are a set of hermitean, λ

†
j = λj, traceless matrices, trλj = 0, which obey the

commutation relations

[λj,λk] = if
jkl
λ
l

(3.25)

The numerical constants f jkl are known as the structure constants of the Lie
group and are the same in all its representations. In addition, the generators
have to be normalized. It is standard to require the normalization condition

trλ
a
λ
b
=

1
2
δ
ab

(3.26)

In the case considered above, the complex scalar field φ(x), the symme-
try group is the group of unit length complex numbers of the form e

iα.
This group is known as the group U(1). All its representations are one-
dimensional, and has only one generator.

A commonly used group is SU(2). This group, which is familiar from non-
relativistic quantummechanics, has three generators J1, J2 and J3, that obey
the angular momentum algebra

[Ji, Jj] = iεijkJk (3.27)

with

tr(JiJj) = 1
2
δij and trJi = 0 (3.28)

The representations of SU(2) are labelled by the angular momentum quan-
tum number J . Each representation J is a 2J + 1-fold degenerate multiplet,
i.e. the dimension of the representation is 2J + 1.

The lowest non-trivial representation of SU(2), i.e. J ≠ 0, is the spinor
representation which has J =

1
2
and is two-dimensional. In this representa-

tion, the field φa(x) is a two-component complex spinor and the generators
J1, J2 and J3 are given by the set of 2 × 2 Pauli matrices Jj =

1
2
σj .

The vector, or spin 1, representation is three-dimensional, and φa is a
three-component vector. In this representation, the generators are very sim-
ple

(Jj)kl = εjkl (3.29)

Notice that the dimension of this representation (3) is the same as the rank
(3) of the group SU(2). In this representation, known as the adjoint repre-
sentation, the matrix elements of the generators are the structure constants.
This is a general property of all Lie groups. In particular, for the group
SU(N), whose rank is N

2
− 1, it has N

2
− 1 infinitesimal generators, and
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the dimension of its adjoint (vector) representation is N2
− 1. For instance,

for SU(3) the number of generators is eight.
Another important case is the group of rotations of N -dimensional Eu-

clidean space, O(N). In this case, the group has N(N − 1)/2 generators
which can be labelled by the matrices Lij (i, j = 1, . . . , N). The fundamental
(vector) representation of O(N) is N -dimensional and, in this representa-
tion, the generators are

(Lij)kl = −i(δikδj$ − δi$δjk) (3.30)

It is easy to see that the Lij’s generate infinitesimal rotations inN -dimensional
space.

Quite generally, in a given representation an element of a Lie group is
labelled by a set of Euler angles denoted by θ. If the Euler angles θ are
infinitesimal, then the representation matrix exp(iλ ⋅θ) is close to the iden-
tity, and can be expanded in powers of θ. To leading order in θ the change
in φa is

δφ
a(x) = i(λ ⋅ θ)abφb(x) + . . . (3.31)

If φa is real, the conserved current jµ is

j
k
µ(x) = δL

δ∂µφ
a(x) λkab φb(x) (3.32)

where k = 1, . . . ,D(G). Here, the generators λk are real hermitean matrices.
In contrast, for a complex field φa, the conserved currents are

j
k
µ(x) = i ( δL

δ∂µφ
a(x) λkab φb(x)− δL

δ∂µφ
a(x)∗ λ

k
ab φb(x)∗) (3.33)

Here the generators λk are hermitean matrices (but are not all real).
Thus, we conclude that the number of conserved currents is equal to the

number of generators of the group. For the particular choice

L = (∂µφa)∗(∂µφa) − V (φ∗a φa) (3.34)

the conserved current is

j
k
µ = i λ

k
ab φ

∗
a
←→
∂µφb (3.35)

and the conserved charges are

Q
k
= ∫

V
d
3
x iλ

k
ab φ

∗
a
←→
∂0φb (3.36)

where V is the volume of space.
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3.4 Global and local symmetries: gauge invariance

The existence of global symmetries assumes that, at least in principle, we
can measure and change all of the components of a field φa(x) at all points x
in space at the same time. Relativistic invariance tells us that, although the
theory may posses this global symmetry, in principle this experiment cannot
be carried out. One is then led to consider theories which are invariant if
the symmetry operations are performed locally. Namely, we should require
that the Lagrangian be invariant under local transformations

φa(x) → φ
′
a(x) = (exp [iλkθk(x) ])

ab
φb(x) (3.37)

For instance, we can demand that the theory of a complex scalar field φ(x)
be invariant under local changes of phase

φ(x) → φ
′(x) = e

iθ(x)
φ(x) (3.38)

The standard local Lagrangian L

L = (∂µφ)∗(∂µφ) − V (∣φ∣2) (3.39)

is invariant under global transformations with θ = constant, but it is not in-
variant under arbitrary smooth local transformations θ(x). The main prob-
lem is that since the derivative of the field does not transform like the field
itself, the kinetic energy term is no longer invariant. Indeed, under a local
transformation, we find

∂µφ(x) → ∂µφ
′(x) = ∂µ [eiθ(x)φ(x)] = e

iθ(x) [∂µφ + iφ∂µθ] (3.40)

In order to make L locally invariant we must find a new derivative operator
Dµ, the covariant derivative, which transforms in the same way as the field
φ(x) under local phase transformations, i.e.

Dµφ→ D
′
µφ

′
= e

iθ(x)
Dµφ (3.41)

From a “geometric” point of view we can picture the situation as follows.
In order to define the phase of φ(x) locally, we have to define a local frame,
or fiducial field, with respect to which the phase of the field is measured.
Local gauge invariance is then the statement that the physical properties
of the system must be independent of the particular choice of frame. From
this point of view, local gauge invariance is an extension of the principle of
relativity to the case of internal symmetries.

Now, if we wish to make phase transformations that differ from point to
point in spacetime, we have to specify how the phase changes as we go from
one point x in spacetime to another one y. In other words, we have to define
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a connection that will tell us how to parallel transport the phase of φ from x

to y as we travel along some path Γ. Let us consider the situation in which
x and y are arbitrarily close to each other, i.e. yµ = xµ + dxµ where dxµ is
an infinitesimal 4-vector. The change in φ is

φ(x + dx) − φ(x) = δφ(x) (3.42)

If the transport of φ along some path going from x to x+dx is to correspond
to a phase transformation, then δφ must be proportional to φ. So we are led
to define

δφ(x) = iAµ(x)dxµφ(x) (3.43)

where Aµ(x) is a suitably chosen vector field. Clearly, this implies that the
covariant derivative Dµ must be defined to be

Dµφ ≡ ∂µφ(x) − ieAµ(x)φ(x) ≡ (∂µ − ieAµ)φ (3.44)

where e is a parameter which we will give the physical interpretation of a
coupling constant.

How should Aµ(x) transform? We must choose its transformation law in

such a way that Dµφ transforms like φ(x) itself. Thus, if φ → e
iθ
φ we have

D
′
φ
′
= (∂µ − ieA

′
µ)(eiθφ) ≡ e

iθ
Dµφ (3.45)

This requirement can be met if

i∂µθ − ieA
′
µ = −ieAµ (3.46)

Hence, Aµ should transform like

Aµ → A
′
µ = Aµ +

1
e∂µθ (3.47)

But this is nothing but a gauge transformation! Indeed, if we define the
gauge transformation Φ(x)

Φ(x) ≡ 1
eθ(x) (3.48)

we see that the vector field Aµ transforms like the vector potential of Maxwell’s
electromagnetism.

We conclude that we can promote a global symmetry to a local (i.e. gauge)
symmetry by replacing the derivative operator by the covariant derivative.
Thus, we can make a system invariant under local gauge transformations
at the price of introducing a vector field Aµ, the gauge field, that plays the
role of a connection. From a physical point of view, this result means that
the impossibility of making a comparison at a distance of the phase of the
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field φ(x) requires that a physical gauge field Aµ(x) must be present. This
procedure, that relates the matter and gauge fields through the covariant
derivative, is known as minimal coupling.

There is a set of configurations of φ(x) that changes only because of the
presence of the gauge field. These are the geodesic configurations φc(x).
They satisfy the equation

Dµφc = (∂µ − ieAµ)φc ≡ 0 (3.49)

which is equivalent to the linear equation (see Eq. (3.43))

∂µφc = ieAµφc (3.50)

Let us consider, for example, two points x and y in spacetime at the ends
of a path Γ(x, y). For a given path Γ(x, y), the solution of Eq. (3.49) is the
path-ordered exponential of a line integral

φc(x) = e
−ie ∫Γ(x,y) dzµAµ(z)

φc(y) (3.51)

Indeed, under a gauge transformation, the line integral transforms like

e∫
Γ(x,y) dzµA

µ
↦ e∫

Γ(x,y) dzµA
µ
+ e∫

Γ(x,y) dzµ
1
e∂

µ
θ

= e∫
Γ(x,y) dzµA

µ(z) + θ(y)− θ(x) (3.52)

Hence, we get

φc(y) e−ie ∫Γ dzµA
µ

↦ φc(y) e−ie ∫Γ dzµA
µ

e
−iθ(y)

e
iθ(x)

≡ e
iθ(x)

φc(x) (3.53)

as it should be.
However, we may now want to ask how the change of phase of φc depends

on the choice of the path Γ. Thus, let φΓ1
c (y) and φ

Γ2
c (y) be solutions of

the geodesic equations for two different paths Γ1 and Γ2 with the same end
points, x and y. Clearly, we have that the change of phase ∆γ given by

∆γ = −e∫
Γ1

dzµA
µ
+ e∫

Γ2

dzµA
µ
≡ −e∮

Γ+
dzµA

µ
(3.54)

Here Γ+ is the closed oriented path

Γ
+
= Γ

+
1 ∪ Γ

−
2 (3.55)

and

∫
Γ−
2

dzµAµ = −∫
Γ+
2

dzµAµ (3.56)
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Σ

Γ

Figure 3.4 A closed path Γ is the boundary of the open surface Σ.

Using Stokes theorem we see that, if Σ+ is an oriented surface whose
boundary is the oriented closed path Γ+, ∂Σ+

≡ Γ+ (see Fig.(3.4), then ∆γ
is given by the flux Φ(Σ) of the curl of the vector field Aµ through the
surface Σ+, i.e.

∆γ = −
e

2
∫
Σ+

dSµνF
µν

= −e Φ(Σ) (3.57)

where F
µν is the field tensor

F
µν

= ∂
µ
A
ν
− ∂

ν
A

µ
(3.58)

dSµν is the oriented area element, and Φ(Σ) is the flux through the sur-
face Σ. Both F

µν and dSµν are antisymmetric in their spacetime indices.
In particular, Fµν can also be written as a commutator of two covariant
derivatives

F
µν

=
i
e[Dµ

,D
µ] (3.59)

Thus, F
µν measures the (infinitesimal) incompatibility of displacements

along two independent directions. In other words, Fµν is a curvature tensor.
These results show very clearly that if Fµν is non-zero in some region of
spacetime, then the phase of φ cannot be uniquely determined: the phase of
φc depends on the path Γ along which it is measured.
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3.5 The Aharonov-Bohm effect

The path dependence of the phase of φc is closely related to Aharonov-Bohm
Effect. This is a subtle effect, which was first discovered in the context of
elementary quantum mechanics, and plays a fundamental role in (quantum)
field theory as well.

Consider a quantum mechanical particle of charge e and mass m mov-
ing on a plane. The particle is coupled to an external electromagnetic field
Aµ (here µ = 0, 1, 2 only, since there is no motion out of the plane). Let
us consider the geometry shown in Fig.(3.5) in which an infinitesimally
thin solenoid pierces the plane in the vicinity of some point r = 0. The

Φ

Σ
+

Γ
+

r0

r

Γ1

Γ2

Figure 3.5 Geometric setup of the Aharonov-Bohm effect: a magnetic flux
Φ ≠ 0 is thread through the small hole in the punctured plane Σ+. Here Γ+

are the oriented outer and inner edges of Σ+; Γ1 and Γ2 are two inequivalent
paths from r0 to r described in the text.

Schrödinger Equation for this problem is

HΨ = ih̵
∂Ψ
∂t

(3.60)

where

H =
1
2m

( h̵
i
*+

e
cA)2 (3.61)

is the Hamiltonian. The magnetic field B = Bẑ vanishes everywhere except
at r = 0,

B = Φ0 δ(r) (3.62)



3.5 The Aharonov-Bohm effect 65

Using Stokes theorem we see that the flux of B through an arbitrary region
Σ+ with boundary Γ+ is

Φ = ∫
Σ+

dS ⋅B = ∮
Γ+

d$ ⋅A (3.63)

Hence, Φ = Φ0 for all surfaces Σ+ that enclose the point r = 0, and it is
equal to zero otherwise. Hence, although the magnetic field is zero for r ≠ 0,
the vector potential does not (and cannot) vanish.

The wave function Ψ(r) can be calculated in a very simple way. Let us
define

Ψ(r) = e
iθ(r)

Ψ0(r) (3.64)

where Ψ0(r) satisfies the Schrödinger Equation in the absence of the field,
i.e.

H0Ψ0 = ih̵
∂Ψ0

∂t
(3.65)

with

H0 = −
h̵
2

2m
*

2
(3.66)

Since the wave function Ψ has to be differentiable and Ψ0 is single valued,
we must also demand the boundary condition that

lim
r→0

Ψ0(r, t) = 0 (3.67)

The wave function Ψ = Ψ0 e
iθ looks like a gauge transformation. But we

will discover that there is a subtlety here. Indeed, θ can be determined as
follows. By direct substitution we get

( h̵
i
*+

e
cA) (eiθΨ0) = e

iθ (h̵ *θ +
e
cA +

h̵

i
*)Ψ0 (3.68)

Thus, in order to succeed in our task, we only have to require that A and θ
must obey the relation

h̵*θ +
e
cA ≡ 0 (3.69)

Or, equivalently,

*θ(r) = −
e

h̵c
A(r) (3.70)

However, if this relation holds, θ cannot be a smooth function of r. In fact,
the line integral of *θ on an arbitrary closed path Γ+ is given by

∫
Γ+

d$ ⋅*θ = ∆θ (3.71)
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where ∆θ is the total change of θ in one full counterclockwise turn around
the path Γ. It is the immediate to see that ∆θ is given by

∆θ = −
e

h̵c
∮

Γ+
d$ ⋅A (3.72)

We must conclude that, in general, θ(r) is a multivalued function of r which
has a branch cut going from r = 0 out to some arbitrary point at infin-
ity. The actual position and shape of the branch cut is irrelevant, but the
discontinuity ∆θ of θ across the cut is not irrelevant.

Hence, Ψ0 is chosen to be a smooth, single valued, solution of the Schrödinger
equation in the absence of the solenoid, satisfying the boundary condition
of Eq. (3.67). Such wave functions are (almost) plane waves.

Since the function θ(r) is multivalued and, hence, path-dependent, the
wave function Ψ is also multivalued and path-dependent. In particular, let
r0 be some arbitrary point on the plane and Γ(r0, r) is a path that begins
in r0 and ends at r. The phase θ(r) is, for that choice of path, given by

θ(r) = θ(r0) − e

h̵c
∫
Γ(r0,r) dx ⋅A(x) (3.73)

The overlap of two wave functions that are defined by two different paths
Γ1(r0, r) and Γ2(r0, r) is (with r0 fixed)

⟨Γ1∣Γ2⟩ = ∫ d
2
r Ψ

∗
Γ1
(r) ΨΓ2

(r)
≡ ∫ d

2
r ∣Ψ0(r)∣2 exp {+ ie

h̵c
(∫

Γ1(r0,r) d$ ⋅A − ∫
Γ2(r0,r) d$ ⋅A)}

(3.74)

If Γ1 and Γ2 are chosen in such a way that the origin (where the solenoid
is piercing the plane) is always to the left of Γ1 but it is also always to the
right of Γ2, the difference of the two line integrals is the circulation of A

∫
Γ1(r0,r) d$ ⋅A − ∫

Γ2(r0,r) d$ ⋅A ≡ ∮
Γ+(r0)

d$ ⋅A (3.75)

on the closed, positively oriented, contour Γ+
= Γ1(r0, r) ∪ Γ2(r, r0). Since

this circulation is constant, and equal to the flux Φ, we find that the overlap⟨Γ1∣Γ2⟩ is

⟨Γ1∣Γ2⟩ = exp { ie

h̵c
Φ} (3.76)

where we have taken Ψ0 to be normalized to unity. The result of Eq.(3.76)
is known as the Aharonov-Bohm Effect.
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We find that the overlap is a pure phase factor which, in general, is dif-
ferent from one. Notice that, although the wave function is always defined
up to a constant arbitrary phase factor, phase changes are physical effects.
In addition, for some special choices of Φ the wave function becomes single
valued. These values correspond to the choice

e

h̵c
Φ = 2πn (3.77)

where n is an arbitrary integer. This requirement amounts to a quantization
condition for the magnetic flux Φ, i.e.

Φ = n (hce ) ≡ nΦ0 (3.78)

where Φ0 is the flux quantum, Φ0 =
hc
e
.

In 1931 Dirac considered the effects of a monopole configuration of mag-
netic fields on the quantum mechanical wave functions of charged particles
(Dirac, 1931). In Dirac’s construction, a magnetic monopole is represented
as a long thin solenoid in three-dimensional space. The magnetic field near
the end of the solenoid is the same as that of a magnetic charge m equal
to the magnetic flux going through the solenoid. Dirac argued that for the
solenoid (the “Dirac string”) to be unobservable, the wave function must be
single-valued. This requirement leads to the Dirac quantization condition
for the smallest magnetic charge,

me = 2πh̵c (3.79)

which we recognize is the same as the flux quantization condition of Eq.(3.78).

3.6 Non-abelian gauge invariance

Let us now consider systems with a non-abelian global symmetry. This
means that the field φ transforms like some representation of a Lie group G,

φ
′
a(x) = Uabφb(x) (3.80)

where U is a matrix that represents the action of a group element. The local
Lagrangian density

L = ∂µφ
∗
a∂

µ
φ
a
− V (∣φ∣2) (3.81)

is invariant under global transformations.
Suppose now that we want to promote this global symmetry to a local

one. However, it is also correct for this general case as well that while the
potential term V (∣φ∣2) is invariant even under local transformations U(x),



68 Classical Symmetries and Conservation Laws

the first term of the Lagrangian of Eq.(3.81) is not. Indeed, the gradient of
φ does not transform properly (i.e. covariantly) under the action of the Lie
group G,

∂µφ
′(x) =∂µ[U(x)φ(x)]

= (∂µU(x))φ(x) + U(x)∂µφ(x)
=U(x)[∂µφ(x) + U

−1(x)∂µU(x)φ(x)] (3.82)

Hence ∂µφ does not transform in the same way as the φ field.
We can now follow the same approach that we used in the abelian case and

define a covariant derivative operator Dµ which should have the property
that Dµφ should obey the same transformation law as the field φ, i.e.

(Dµφ(x))′ = U(x) (Dµφ(x)) (3.83)

It is clear that Dµ is now both a differential operator as well as a matrix
acting on the field φ. Thus, Dµ depends on the representation that was
chosen for the field φ. We can now proceed in analogy with what we did
in the case of electrodynamics, and guess that the covariant derivative Dµ

should be of the form

Dµ = I ∂µ − igAµ(x) (3.84)

where g is a coupling constant, I is the N ×N identity matrix, and Aµ is a
matrix-valued vector field. If φ has N components, the vector field Aµ(x) is
an N ×N hermitian matrix which can be expanded in the basis of the group
generators λkab (with k = 1, . . . ,D(G), and a, b = 1, . . . , N) which span the
algebra of the Lie group G,

(Aµ(x))ab = A
k
µ(x)λkab (3.85)

Thus, the vector field Aµ(x) is parametrized by the D(G)-component 4-

vectors A
k
µ(x). We will choose the transformation properties of Aµ(x) in

such a way that Dµφ transforms covariantly under gauge transformations,

D
′
µφ(x)′ ≡D′

µ (U(x)φ(x)) = (∂µ − igA
′
µ(x)) (Uφ(x))

=U(x)[∂µφ(x) + U
−1(x)∂µU(x)φ(x) − igU

−1(x)A′
µ(x)U(x)φ(x)]

≡U(x) Dµφ(x) (3.86)

This condition is met if we require that

U
−1(x)igA′

µ(x)U(x) = igAµ(x) + U
−1(x)∂µU(x) (3.87)
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or, equivalently, that Aµ obeys the transformation law

A
′
µ(x) = U(x)Aµ(x)U−1(x) − i

g (∂µU(x))U−1(x) (3.88)

Since the matrices U(x) are unitary and invertible, we have

U
−1(x)U(x) = I (3.89)

we can equivalently write the transformed vector field A
′
µ(x) in the form

A
′
µ(x) = U(x)Aµ(x)U−1(x) + i

gU(x) (∂µU−1(x)) (3.90)

This is the general form of a gauge transformation for a non-abelian Lie
group G.

In the case of an abelian symmetry group, such as the group U(1), the
matrix reduces a simple phase factor, U(x) = e

iθ(x), and the field Aµ(x) is
a real number-valued vector field. It is easy to check that, in this case, Aµ

transforms as follows

A
′
µ(x) =eiθ(x)Aµ(x)e−iθ(x) + i

g e
iθ(x)

∂µ(e−iθ(x))
≡Aµ(x) + 1

g∂µθ(x) (3.91)

which recovers the correct form for an abelian gauge transformation.
Returning now to the non-abelian case, we see that under an infinitesimal

transformation U(x)
(U(x))ab = [exp (iλkθk(x))]

ab
≅ δab + iλ

k
ab θ

k(x) + . . . (3.92)

the scalar field φ(x) transforms as

δφa(x) ≅ iλ
k
abφb(x) θk(x) + . . . (3.93)

while the vector field A
k
µ now transforms as

δA
k
µ(x) ≅ if

ksj
A

j
µ(x) θs(x) + 1

g∂µθ
k(x) + . . . (3.94)

Thus, Ak
µ(x) transforms as a vector in the adjoint representation of the Lie

group G since, in that representation, the matrix elements of the generators
are the group structure constants f

ksj. Notice that A
k
µ is always in the

adjoint representation of the group G, regardless of the representation in
which φ(x) happens to be in.

From the discussion given above, it is clear that the field Aµ(x) can be
interpreted as a generalization of the vector potential of electromagnetism.
Furthermore, Aµ provides for a natural connection which tell us how the
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“internal coordinate system,” in reference to which the field φ(x) is defined,
changes from one point xµ of spacetime to a neighboring point xµ + dxµ.
In particular, the configurations φa(x) which are solutions of the geodesic
equation

D
ab
µ φb(x) = 0 (3.95)

correspond to the parallel transport of φ from some point x to some point y.
This equation can be written in the equivalent form

∂µφa(x) = igA
k
µ(x) λkab φb(x) (3.96)

This linear partial differential equation can be solved as follows. Let xµ
and yµ be two arbitrary points in spacetime and Γ(x, y) a fixed path with
endpoints at x and y. This path is parametrized by a mapping zµ from the
real interval [0, 1] to Minkowski space M (or any other space), zµ ∶ [0, 1] ↦
M, of the form

zµ = zµ(t), t ∈ [0, 1] (3.97)

with the boundary conditions

zµ(0) = xµ and zµ(1) = yµ (3.98)

By integrating the geodesic equation Eq.(3.95) along the path Γ we obtain

∫
Γ(x,y) dzµ

∂φa(z)
∂zµ

= ig ∫
Γ(x,y) dzµ A

µ
ab(z) φb(z) (3.99)

Hence, we find that φ(x) must be the solution of the integral equation

φ(y) = φ(x) + ig ∫
Γ(x,y) dzµ A

µ(z)φ(z) (3.100)

where we have omitted all the indices to simplify the notation. In terms of
the parametrization zµ(t) of the path Γ(x, y) we can write

φ(y) = φ(x) + ig ∫ 1

0
dt

dzµ
dt

A
µ (z(t)) φ (z(t)) (3.101)

We will solve this equation by means of an iteration procedure, similar to
what it is used for the evolution operator in quantum theory. By substituting
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repeatedly the l.h.s. of this equation into its r. h. s. we get the series

φ(y) = φ(x) + ig ∫ 1

0
dt

dzµ(t)
dt

A
µ (z(t))φ(x)

+ (ig)2 ∫ 1

0
dt1 ∫

t1

0
dt2

dzµ1
(t1)

dt1

dzµ2
(t2)

dt2
A

µ1 (z(t1))Aµ2 (z(t2))φ(x)
+ . . . + (ig)n ∫ 1

0
dt1 ∫

t1

0
dt2 . . .∫

tn−1

0
dtn

n

∏
j=1

(dzµj
(tj)

dtj
A

µj (z(tj)))φ(x)
+ . . . (3.102)

Here we need to keep in mind that the A
µ’s are matrix-valued fields which

are ordered from left to right!.
The nested integrals of Eq.(3.102) can be written in the form

In = (ig)n ∫ 1

0
dt1 ∫

t1

0
dt2 . . .∫

tn−1

0
dtn F (t1)⋯F (tn)

≡
(ig)n
n!

P̂ [(∫ 1

0
dt F (t))n] (3.103)

where the F ’s are matrices and the operator P̂ means the path-ordered prod-
uct of the objects sitting to its right. If we formally define the exponential
of an operator to be equal to its power series expansion,

e
A
≡

∞

∑
n=0

1
n!
A

n
(3.104)

where A is some arbitrary matrix, we see that the geodesic equation has the
formal solution

φ(y) = P̂ [exp (+ig ∫ 1

0
dt

dzµ
dt

A
µ(z(t)))] φ(x) (3.105)

or, what is the same

φ(y) = P̂ [exp (ig ∫
Γ(x,y) dzµ A

µ(z))] φ(x) (3.106)

Thus, φ(y) is given by an operator, the path-ordered exponential of the line
integral of the vector potential Aµ, acting on φ(x).

By expanding the exponential in a power series, it is easy to check that,
under an arbitrary local gauge transformation U(z), the path ordered ex-
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ponential transforms as follows

P̂ [ exp(ig ∫
Γ(x,y) dz

µ
A

′
µ(z(t)))]

≡ U(y) P̂ [exp (ig ∫
Γ(x,y) dz

µ
Aµ(z))] U

−1(x) (3.107)

In particular we can consider the case of a closed path Γ(x, x), where x is
an arbitrary point on Γ. The path-ordered exponential ŴΓ(x,x)

ŴΓ(x,x) = P̂ [exp (ig ∫
Γ(x,x) dz

µ
Aµ(z))] (3.108)

is not gauge invariant since, under a gauge transformation it transforms as

Ŵ
′
Γ(x,x) = P̂ [exp (ig ∫

Γ(x,x) dz
µ
A

′
µ(z))]

= U(x) P̂ [exp (ig ∫
Γ(x,x) dz

µ
Aµ(t))] U

−1(x) (3.109)

Therefore ŴΓ(x,x) transforms like a group element,

ŴΓ(x,x) = U(x) ŴΓ(x,x) U−1(x) (3.110)

However, the trace of ŴΓ(x, x), which we denote by

WΓ = tr ŴΓ(x,x) ≡ tr P̂ [exp (ig ∫
Γ(x,x) dz

µ
Aµ(z))] (3.111)

not only is gauge-invariant but it is also independent of the choice of the
point x. However, it is a functional of the path Γ. The quantity WΓ, which
is known as the Wilson loop, plays a crucial role in gauge theories. In the
quantum theory this object will become the Wilson loop operator.

Let us now consider the case of a small closed path Γ. If Γ is small, then the
minimal area a(Γ) enclosed by Γ and its length +(Γ) are both infinitesimal.
In this case, we can expand the exponential in powers and retain only the
leading terms. We get

ŴΓ ≈ I + igP̂ ∮
Γ
dz

µ
Aµ(z) + (ig)2

2!
P̂ (∮

Γ
dz

µ
Aµ(z))2 +⋯ (3.112)

Stokes theorem says that the first integral, the circulation of the vector field
Aµ on the closed path Γ, is given by

∮
Γ
dzµA

µ(z) = ∫ ∫
Σ
dx

µ
∧ dx

ν 1
2
(∂µAν − ∂νAµ) (3.113)
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where ∂Σ = Γ is the infinitesimal area element bounded by Γ, and dx
µ
∧dx

ν

is the oriented infinitesimal area element. Furthermore, the quadratic term
in Eq.(3.112) can be expressed as follows

1
2!
P̂ (∮

Γ
dz

µ
Aµ(z))2 ≡ 1

2
∫ ∫

Σ
dx

µ
∧ dx

ν (−[Aµ, Aν]) + . . . (3.114)

Therefore, for an infinitesimally small loop, we get

ŴΓ(x,x′) ≈ I +
ig

2
∫ ∫

Σ
dx

µ
∧ dx

ν
Fµν +O(a(Σ)2) (3.115)

where Fµν is the field tensor, defined by

Fµν ≡ ∂µAν − ∂νAµ − ig[Aµ, Aν] = i [Dµ,Dν] (3.116)

Keep in mind that since the fields Aµ are matrices, the field tensor Fµν is
also a matrix.

Notice also that now Fµν is not gauge invariant. Indeed, under a local
gauge transformation U(x), Fµν transforms as a similarity transformation

F
′
µν(x) = U(x)Fµν(x)U−1(x) (3.117)

This property follows from the transformation properties of Aµ. However, al-
though Fµν itself is not gauge invariant, other quantities such as tr(FµνF

µν)
are gauge invariant.

Let us finally note the form of Fµν in components. By expanding Fµν in

the basis of the group generators λk (hence, in the algebra of the gauge
group),

Fµν = F
k
µνλ

k
(3.118)

we find that the components, F k
µν are

F
k
µν = ∂µA

k
ν − ∂νA

k
µ + gf

k$m
A
$
µA

m
ν (3.119)

The natural local, gauge-invariant, theory for a non-abelian gauge group
is the Yang-Mills Lagrangian

L = −
1
4
trFµνF

µν
(3.120)

for a general compact Lie group G, that we will call the gauge group. Notice
that the apparent similarity with the Maxwell Lagrangian is only superficial,
since in this theory it is not quadratic in the vector potentials. We will see
in later chapters that other Lagrangians are possible in other dimensions if
some symmetry, e.g. time-reversal, is violated.
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3.7 Gauge invariance and minimal coupling

We are now in a position to give a general prescription for the coupling of
matter and gauge fields. Since the issue here is local gauge invariance, this
prescription is valid for both relativistic and non-relativistic theories.

So far, we have considered two cases: (a) fields that describe the dynamics
of matter and (b) gauge fields that describe electromagnetism and chromo-
dynamics. In our description of Maxwell’s electrodynamics we saw that, if
the Lagrangian is required to respect local gauge invariance, then only con-
served currents can couple to the gauge field. However, we have also seen
that the presence of a global symmetry is a sufficient condition for the exis-
tence of a locally conserved current. This is not only a necessary condition
since a local symmetry also requires the existence of a conserved current.

We will now consider more general Lagrangians that will include both
matter and gauge fields. In the last sections we saw that if a system with
Lagrangian L(φ, ∂µφ) has a global symmetry φ → Uφ, then by replacing
all derivatives by covariant derivatives we promote a global symmetry into
a local (or gauge) symmetry. We will proceed with our general philosophy
and write down gauge-invariant Lagrangians for systems which contain both
matter and gauge fields. I will give a few explicit examples

3.7.1 Quantum electrodynamics

Quantum Electrodynamics (QED) is a theory of electrons and photons. The
electrons are described by Dirac spinor fields ψα(x). The reason for this
choice will become clear when we discuss the quantum theory and the Spin-
Statistics theorem. Photons are described by a U(1) gauge field Aµ. The
Lagrangian for free electrons is just the free Dirac Lagrangian, LDirac

LDirac(ψ, ψ̄) = ψ̄(i/∂ −m)ψ (3.121)

The Lagrangian for the gauge field is the free Maxwell Lagrangian Lgauge(A)
Lgauge(A) = −

1
4
FµνF

µν
≡ −

1
4
F

2
(3.122)

The prescription that we will adopt, known as minimal coupling, consists in
requiring that the total Lagrangian be invariant under local gauge transfor-
mations.

The free Dirac Lagrangian is invariant under the global phase transforma-
tion (i.e. with the same phase factor for all the Dirac components)

ψα(x) → ψ
′
α(x) = e

iθ
ψα(x) (3.123)
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if θ is a constant, arbitrary phase, but it is not invariant not under the local
phase transformation

ψα(x) → ψ
′
α(x) = e

iθ(x)
ψα(x) (3.124)

As we saw before, the matter part of the Lagrangian can be made invariant
under the local transformations

ψα(x) → ψ
′
α(x) = e

iθ(x)
ψα(x)

Aµ(x) → A
′
µ(x) = Aµ(x) + 1

e∂µθ(x) (3.125)

if the derivative ∂µψ is replaced by the covariant derivative Dµ

Dµ = ∂µ − ieAµ(x) (3.126)

The total Lagrangian is now given by the sum of two terms

L = Lmatter(ψ, ψ̄, A) + Lgauge(A) (3.127)

where Lmatter(ψ, ψ̄, A) is the gauge-invariant extension of the Dirac La-
grangian, i.e.

Lmatter(ψ, ψ̄, A) = ψ̄(i /D −m)ψ
= ψ̄ (i/∂ −m)ψ + eψ̄γµψA

µ
(3.128)

Lgauge(A) is the usual Maxwell term and /D is a shorthand for Dµγ
µ. Thus,

the total Lagrangian for QED is

LQED = ψ̄(i /D −m)ψ −
1
4
F

2
(3.129)

Notice that now both matter and gauge fields are dynamical degrees of
freedom.

The QED Lagrangian has a local gauge invariance. Hence, it also has a
locally conserved current. In fact the argument that we used above to show
that there are conserved (Noether) currents if there is a continuous global
symmetry, is also applicable to gauge invariant Lagrangians. As a matter of
fact, under an arbitrary infinitesimal gauge transformation

δψ = iθψ δψ̄ = −iθψ̄ δAµ =
1
e
∂µθ (3.130)

the QED Lagrangian remains invariant, i.e. δL = 0. An arbitrary variation
of L is

δL =
δL

δψ
δψ +

δL

δ∂µψ
δ∂µψ + (ψ ↔ ψ̄) + δL

δ∂µAν
δ∂µAν +

δL

δAµ
δAµ (3.131)
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After using the equations of motion and the form of the gauge transforma-
tion, δL can be written in the form

δL = ∂µ[jµ(x)θ(x)]− 1
eF

µν(x)∂µ∂νθ(x)+ δL

δAµ

1
e∂µθ(x) (3.132)

where j
µ(x) is the electron number current

j
µ
= i( ∂L

δ∂µψ
ψ − ψ̄

δL

δ∂µψ̄
) (3.133)

For smooth gauge transformations θ(x), the term F
µν
∂µ∂νθ vanishes be-

cause of the antisymmetry of the field tensor Fµν . Hence we can write

δL = θ(x)∂µjµ(x) + ∂µθ(x) [jµ(x) + 1
e

δL

δAµ(x)] (3.134)

The first term tells us that since the infinitesimal gauge transformation θ(x)
is arbitrary, the Dirac current jµ(x) locally is conserved, i.e. ∂µj

µ
= 0.

Let us define the charge (or gauge) current Jµ(x) by the relation

J
µ(x) ≡ δL

δAµ(x) (3.135)

which is the current that enters in the Equation of Motion for the gauge
field Aµ, i.e. the Maxwell equations. The vanishing of the second term of Eq.
(3.134), required since the changes of the infinitesimal gauge transformations
are also arbitrary, tells us that the charge current and the number current
are related by

Jµ(x) = −ejµ(x) = −e ψ̄γµψ (3.136)

This relation tells us that since j
µ(x) is locally conserved, then the global

conservation of Q0

Q0 = ∫ d
3
xj0(x) ≡ ∫ d

3
x ψ

†(x)ψ(x) (3.137)

implies the global conservation of the electric charge Q

Q ≡ −eQ0 = −e∫ d
3
x ψ

†(x)ψ(x) (3.138)

This property justifies the interpretation of the coupling constant e as the
electric charge. In particular the gauge transformation of Eq.(3.125), tells
us that the matter field ψ(x) represents excitations that carry the unit of
charge, ±e . From this point of view, the electric charge can be regarded as
a quantum number. This point of view becomes very useful in the quantum
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theory in the strong coupling limit. In this case, under special circumstances,
the excitations may acquire unusual quantum numbers. This is not the case
of Quantum Electrodynamics, but it is the case of a number of theories
in one and two space dimensions, with applications in Condensed Matter
systems such as polyacetylene, or the two-dimensional electron gas in high
magnetic fields, i.e. the fractional quantum Hall effect, or in gauge theories
with magnetic monopoles).

3.7.2 Quantum chromodynamics

Quantum Chromodynamics (QCD) is the gauge field theory of strong in-
teractions in hadron physics. In this theory the elementary constituents of
hadrons, the quarks, are represented by the Dirac spinor field ψ

i
α(x). The

theory also contains a set of gauge fields A
a
µ(x) that represent the gluons.

The quark fields have both Dirac indices α = 1, . . . , 4 and color indices
i = 1, . . . , Nc, where Nc is the number of colors. In the Standard Model of
weak, strong interactions, and electromagnetic in particle physics, and in
QCD, there are in addition Nf = 6 flavors of quarks, grouped into three
generations, each labeled by a flavor index, and six flavors of leptons, also
grouped into three generations. The flavor symmetry is a global symmetry
of the theory.

Quarks are assumed to transform under the fundamental representation
of the gauge (or color) group G, say SU(Nc). The theory is invariant un-
der the group of gauge transformations. In QCD, the color group is SU(3)
and so Nc = 3. The color symmetry is a non-abelian gauge symmetry. The
gauge field Aµ is needed in order to enforce local gauge invariance. In com-
ponents, we get Aµ = A

a
µλ

a, where λa are the generators of SU(Nc). Thus,
a = 1, . . . ,D(SU(Nc)), and D(SU(Nc) = N

2
c − 1. Thus, Aµ is an N

2
c − 1

dimensional vector in the adjoint representation of G. For SU(3), N2
c −1 = 8

and there are eight generators.
The gauge-invariant matter term of the Lagrangian, Lmatter is

Lmatter(ψ, ψ̄, A) = ψ̄(i /D −m)ψ (3.139)

where /D = /∂ − ig /A ≡ /∂ − ig /Aa
λ
a is the covariant derivative. The gauge field

term of the Lagrangian Lgauge

Lgauge(A) = −
1
4
trFµνF

µν
≡ −

1
4
F

a
µνF

µν
a (3.140)

is the Yang-Mills Lagrangian. The total Lagrangian for QCD is LQCD

LQCD = Lmatter(ψ, ψ̄, A) + Lgauge(A) (3.141)
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Can we define a color charge? Since the color group is non-abelian it
has more than one generator. We showed before that there are as many
conserved currents as generators are in the group. Now, in general, the group
generators do not commute with each other. For instance, in SU(2) there is
only one diagonal generator, J3, while in SU(3) there are only two diagonal
generators, etc. Can all the global charges Q

a

Q
a
≡ ∫ d

3
x ψ

†(x)λaψ(x) (3.142)

be defined simultaneously? It is straightforward to show that the Poisson
Brackets of any pair of charges are, in general, different from zero. We will
see below, when we quantize the theory, that the charges Qa obey the same
commutation relations as the group generators themselves do. So, in the
quantum theory, the only charges that can be assigned to states are precisely
the same as the quantum numbers that label the representations. Thus, if the
group is SU(2), we can only assign to the states the values of the quadratic
Casimir operator J2 and of the projection J3. Similar restrictions apply to
the case of SU(3) and to other Lie groups.

3.8 Spacetime symmetries and the energy-momentum tensor

Until now we have considered only the role of internal symmetries. We now
turn to spacetime symmetries, and consider the role of coordinate transfor-
mations. In this more general setting we will have to require the invariance
of the action rather than only of the Lagrangian, as we did for internal
symmetries.

There are three continuous spacetime symmetries that will be important
to us: a) translation invariance, b) rotation invariance and c) homogeneity
of time. While rotations are a subgroup of Lorentz transformation, space
and time translations are examples of inhomogeneous Lorentz transforma-
tions (in the relativistic case) and of Galilean transformations (in the non-
relativistic case). Inhomogeneous Lorentz transformations also form a group,
known as the Poincaré group. Note that the transformations discussed above
are particular cases of more general coordinate transformations. However, it
is important to keep in mind that, in most cases, general coordinate transfor-
mations are not symmetries of an arbitrary system. They are the symmetries
of General Relativity.

In what follows we are going to consider the response of a system to
infinitesimal coordinate transformations of the form

x
′
µ = xµ + δxµ (3.143)
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where δxµ may be a function of the spacetime point xµ. Under a coordinate
transformation the fields change as

φ(x) → φ
′(x′) = φ(x) + δφ(x) + ∂µφ δx

µ
(3.144)

where δφ is the variation of φ in the absence of a change of coordinates , i.e.
a functional change. In this notation, a uniform infinitesimal translation by
a constant vector aµ has δxµ = aµ and an infinitesimal rotation of the space
axes is δx0 = 0 and δxi = εijkθjxk.

In general, the action of the system is not invariant under arbitrary
changes in both coordinates and fields. Indeed, under an arbitrary change
of coordinates xµ → x

′
µ(xµ), the volume element d

4
x is not invariant and

changes by a multiplicative factor of the form

d
4
x
′
= d

4
x J (3.145)

where J is the Jacobian of the coordinate transformation

J =
∂x

′
1⋯x

′
4

∂x1⋯x4
≡

8888888888det (
∂x

′
µ

∂xj
)8888888888 (3.146)

For an infinitesimal transformation, x′µ = xµ + δxµ(x), we get

∂x
′
µ

∂xν
= g

ν
µ + ∂

ν
δxµ (3.147)

Since δxµ is small, the Jacobian can be approximated by

J =

8888888888det (
∂x

′
µ

∂xν
)8888888888 = ∣det (gνµ + ∂

ν
δxµ)∣ ≈ 1+ tr(∂νδxµ) +O(δx2) (3.148)

Thus

J ≈ 1 + ∂
µ
δxµ +O(δx2) (3.149)

The Lagrangian itself is in general not invariant. For instance, even though
we will always be interested in systems whose Lagrangians are not an ex-
plicit function of x, still they are not in general invariant under the given
transformation of coordinates. Also, under a coordinate change the fields
may also transform. Thus, in general, δL does not vanish.

The most general variation of L is

δL = ∂µL δx
µ
+
δL

δφ
δφ +

δL

δ∂µφ
δ∂µφ (3.150)
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If φ obeys the equations of motion,

δL

δφ
= ∂µ

δL

δ∂µφ
(3.151)

then, the general change δL obeyed by the solutions of the equations of
motion is

δL = δx
µ
∂µL + ∂µ ( δL

δ∂µφ
δφ) (3.152)

The total change in the action is a sum of two terms

δS = δ ∫ d
4
x L = ∫ δd

4
x L + ∫ d

4
x δL (3.153)

where the change in the integration measure is due to the Jacobian factor,

δd
4
x = d

4
x ∂µδx

µ
(3.154)

Hence, δS is given by

δS = ∫ d
4
x [(∂µδxµ) L + δx

µ
∂µL + ∂µ ( δL

δ∂µφ
δφ)] (3.155)

Since the total variation of φ, δTφ, is the sum of the functional change of
the fields plus the changes in the fields caused by the coordinate transfor-
mation,

δTφ ≡ δφ + ∂µφδx
µ

(3.156)

we can write δS as a sum of two contributions: one due to change of coor-
dinates and another due to functional changes of the fields:

δS = ∫ d
4
x [(∂µδxµ) L+ δx

µ
∂µL + ∂µ ( δL

δ∂µφ
(δTφ − ∂νφδx

ν))] (3.157)

Therefore, for the change of the action we get

δS = ∫ d
4
x {∂µ [(gµνL−

δL

δ∂µφ
∂νφ) δx

ν] + ∂µ [ δL

δ∂µφ
δTφ]} (3.158)

We have already encountered the second term when we discussed the case
of internal symmetries. The first term represents the change of the action S

as a result of a change of coordinates.
We will now consider a few explicit examples. To simplify matters we will

consider the effects of coordinate transformations alone. For simplicity, here
we will restrict our discussion to the case of the scalar field.
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3.8.1 Spacetime translations

Under a uniform infinitesimal translation δxµ = aµ, the field φ does not
change

δTφ = 0 (3.159)

The change of the action now is

δS = ∫ d
4
x ∂µ (gµνL −

δL

δ∂µφ
∂
ν
φ) aν (3.160)

For a system which is isolated and translationally invariant the action must
not change under a redefinition of the origin of the coordinate system. Thus,
δS = 0. Since aµ is arbitrary, it follows that the tensor T µν

T
µν

≡ −g
µν
L +

δL

δ∂µφ
∂
ν
φ (3.161)

is conserved,

∂µT
µν

= 0 (3.162)

The tensor T µν is known as the energy-momentum tensor. The reason for
this name is the following. Given that T µν is locally conserved, by Noether’s
theorem we can define the 4-vector P

ν

P
ν
= ∫ d

3
x T

0ν(x, x0) (3.163)

which is a constant of motion. In particular, P 0 is given by

P
0
= ∫ d

3
x T

00(x, x0) ≡ ∫ d
3
x [−L +

δL

δ∂0φ
∂
0
φ] (3.164)

But δL
δ∂0φ

is just the canonical momentum Π(x),
Π(x) = δL

δ∂0φ
(3.165)

Then we can easily recognize that the quantity in brackets in Eq.(3.164) in
the definition of P 0 is just the Hamiltonian density H

H = Π ∂
0
φ − L (3.166)

Therefore, the time component of P ν is just the total energy of the system

P
0
= ∫ d

3
x H (3.167)
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The space components P j are

P
j
= ∫ d

3
x T

0j
= ∫ d

3
x [−g0jL +

δL

δ∂jφ
∂
j
φ] (3.168)

Thus, since g
0j

= 0, we get

P = ∫ d
3
x Π(x) ∂φ(x) (3.169)

The vector P is identified with the total linear momentum since (a) it is a
constant of motion, and (b) it is the generator of infinitesimal space trans-
lations. For the same reasons we will denote the component T 0j(x) with the
linear momentum density P

j(x). It is important to stress that the canonical
momentum Π(x) and the total linear momentum density P

j are obviously
completely different physical quantities. While the canonical momentum is
a field which is canonically conjugate to the field φ, the total momentum is
the linear momentum stored in the field, i.e. the linear momentum of the
center of mass.

3.8.2 Rotations

If the action is invariant under global infinitesimal Lorentz transformations,
of which spacial rotations are a particular case,

δxµ = ω
ν
µ xν (3.170)

where ωµν is infinitesimal, and antisymmetric, then the variation of the
action is zero, δS = 0. If φ is a scalar field, then δTφ is also zero. This
is not the case for spinor or vector fields which transforms under Lorentz
transformations. Because of their transformation properties of these fields,
the angular momentum tensor that we define below will be missing the
contribution representing the spin of the field (which vanishes for a scalar
field). Here we will consider only the case of scalars.

Then, since for a scalar field δTφ = 0, we find

δS = 0 = ∫ d
4
x ∂µ [(gµνL −

δL

δ∂µφ
∂
ν
φ) ω

νρ
xρ] (3.171)

Since ωνρ is constant and arbitrary, the magnitude in brackets must also
define a conserved current.

Let Mµνρ be the tensor defined by

M
µνρ

≡ T
µν
x
ρ
− T

µρ
x
ν

(3.172)
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in terms of which, the quantity in brackets in Eq.(3.171) becomes 1
2
ωνρM

µνρ.
Thus, for arbitrary constant ω, we find that the tensor Mµνρ is locally con-
served,

∂µM
µνρ

= 0 (3.173)

In particular, the transformation

δx0 = 0, δxj = ωjkxk (3.174)

represents an infinitesimal rotation of the spatial axes with

ωjk = εjklθl (3.175)

where θl are three infinitesimal Euler angles. Thus, we suspect that M
µνρ

must be related with the total angular momentum. Indeed, the local conser-
vation of the current Mµνρ leads to the global conservation of the tensorial
quantity L

νρ

L
νρ

≡ ∫ d
3
x M

0νρ(x, x0) (3.176)

In particular, the space components of Lνρ are

Ljk = ∫ d
3
x (T0j(x) xk − T0k(x) xj)

= ∫ d
3
x (Pj(x) xj − Pk(x) xj) (3.177)

If we denote by Lj the (pseudo) vector

Lj ≡
1
2
εjkl Lkl (3.178)

we get

Lj ≡ ∫ d
3
x εjkl xk Pl(x) ≡ ∫ d

3
x +j(x) (3.179)

The vector Lj is the generator of infinitesimal rotations and is thus identified
with the total angular momentum, whereas +j(x) is the corresponding (spa-
cial) angular momentum density. Notice that, since we are dealing with a
scalar field, there is no spin contribution to the angular momentum density.

The generalized angular momentum tensor Lνρ of Eq.(3.176) is not trans-
lationally invariant since under a displacement of the origin of the coordinate
system by a

µ, Lνρ changes by an amount aνP ρ
−a

ρ
P
ν . A truly intrinsic an-

gular momentum is given by the Pauli-Lubanski vector W µ,

W
µ
= −

1
2
ε
µνλρL

νλ
P
ρ√

P 2
(3.180)
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which, in the rest frame P = 0, reduces to the angular momentum.
Finally, we find that if the angular momentum tensor Mµνλ has the form

M
µνλ

= T
µν
x
λ
− T

µλ
x
ν

(3.181)

Then, the conservation of the energy-momentum tensor T µν and of the angu-
lar momentum tensor Mµνλ together lead to the condition that the energy-
momentum tensor should be a symmetric second rank tensor,

T
µν

= T
µν

(3.182)

Thus, we conclude that the conservation of angular momentum requires that
the energy momentum tensor T µν for a scalar field be symmetric.

The expression for T
µν that we derived in Eq.(3.161) is not manifestly

symmetric. However, if T µν is conserved, then the “improved” tensor T̃ µν

T̃
µν

= T
µν

+ ∂λK
µνλ

(3.183)

is also conserved, provided the tensor K
µνλ is antisymmetric in (µ,λ) and(ν,λ). It is always possible to find such a tensor K

µνλ to make T̃
µν sym-

metric. The improved, symmetric, energy-momentum tensor is known as the
Belinfante energy-momentum tensor.

In particular, for the scalar field φ(x) whose Lagrangian density L is

L =
1
2
(∂µφ)2 − V (φ) (3.184)

the locally conserved energy-momentum tensor T µν is

T
µν

= −g
µν
L +

δL

δ∂µφ
∂
ν
φ ≡ −g

µν
L + ∂

µ
φ∂

ν
φ (3.185)

which is symmetric. The conserved energy-momentum 4-vector is

P
µ
= ∫ d

3
x (−g0µL + ∂

0
φ∂

µ
φ) (3.186)

Thus, we find that

P
0
= ∫ d

3
x (Π ∂0φ − L) = ∫ d

3
x [1

2
Π

2
+

1
2
(*φ)2 + V (φ)] (3.187)

is the total energy of the field, and

P = ∫ d
3
x Π(x) *φ(x) (3.188)

is the linear momentum P of the field. Both are constants of motion.
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3.9 The energy-momentum tensor for the electromagnetic field

For the case of the Maxwell field Aµ, a straightforward application of these
methods yields an energy-momentum tensor T µν of the form

T
µν

= −g
µν
L+

δL

δ∂νAλ
∂
µ
Aλ

=
1
4
g
µν
F
αβ

Fαβ − F
νλ
∂
µ
Aλ (3.189)

It obeys ∂µT
µν

= 0 and, hence, is locally conserved. However, this tensor
is not gauge invariant. We can construct a gauge-invariant and conserved
energy momentum tensor by exploiting the ambiguity in the definition of
T
µν . Thus, if we choose Kµνλ = FνλAµ, which is anti-symmetric in the

indices ν and λ, we can construct the required gauge-invariant and conserved
energy momentum-tensor

T̃
µν

=
1
4
g
µν
F

2
− F

ν
λF

µλ
(3.190)

where we used the equation of motion of the free electromagnetic field,
∂
λ
Fνλ = 0. Notice that this “improved” energy-momentum tensor is both

gauge-invariant and symmetric.
From here we find that the 4-vector

P
µ
= ∫

x0 fixed
d
3
x T̃

µ0
(3.191)

is a constant of motion. Thus, we identify

P
0
= ∫

x0 fixed
d
3
x T̃

00
= ∫

x0 fixed
d
3
x
1
2
(E2

+B
2) (3.192)

with the Hamiltonian, and

P
i
= ∫

x0 fixed
d
3
x T̃

i0
= ∫

x0 fixed
d
3
x (E ×B)i (3.193)

with the linear momentum (or Poynting vector) of the electromagnetic field.

3.10 The energy-momentum tensor and changes in the geometry

The energy momentum tensor T µν appears in classical field theory as a result
of the translation invariance, in both space and time, of the physical system.
We have seen in the previous section that for a scalar field T

µν is a symmetric
tensor as a consequence of the conservation of angular momentum. The
definition that we found does not require that T µν should have any definite
symmetry. However we found that it is always possible to modify T

µν by
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adding a suitably chosen antisymmetric conserved tensor to find a symmetric
version of T µν . Given this fact, it is natural to ask if there is a way to define
the energy-momentum tensor in a such a way that it is always symmetric.
This issue becomes important if we want to consider theories for systems
which contain fields which are not scalars.

It turns out that it is possible to regard T
µν as the change in the action

due to a change of the geometry in which the system lives. From classi-
cal physics, we are familiar with the fact that when a body is distorted in
some manner, in general its energy increases since we have to perform some
work against the body in order to deform it. A deformation of a body is a
change of the geometry in which its component parts evolve. Examples of
such changes of geometry are shear distortions, dilatations, bendings, and
twists. On the other hand, there are changes that do not cost any energy
since they are symmetry operations. Examples of symmetry operations are
translations and rotations. These symmetry operations can be viewed as
simple changes in the coordinates of the parts of the body which do not
change its geometrical properties, i.e. the distances and angles of different
points. Thus, coordinate transformations do not alter the energy of the sys-
tem. The same type of arguments apply to any dynamical system. In the
most general case, we have to consider transformations which leave the ac-
tion invariant. This leads us to consider how changes in the geometry of the
spacetime affect the action of a dynamical system.

The information about the geometry in which a system evolves is encoded
in the metric tensor of the space (and spacetime). The metric tensor is a
symmetric tensor that specifies how to measure the distance ∣ds∣ between a
pair of nearby points x and x + dx, namely

ds
2
= g

µν(x) dxµ dxν (3.194)

Under an arbitrary local change of coordinates xµ → xµ + δxµ, the metric
tensor changes as follows

g
′
µν(x′) = gλρ(x) ∂xλ

∂x′µ
∂x

ρ

∂x′ν
(3.195)

For an infinitesimal change, this means that the functional change in the
metric tensor δgµν is

δgµν = −
1
2
(gµλ∂νδxλ + gλν∂

µ
δxλ + ∂

λ
gµνδxλ) (3.196)

The volume element, invariant under coordinate transformations, is d4x
√
g,

where g is the determinant of the metric tensor.
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Coordinate transformations change the metric of spacetime but do not
change the action. Physical or geometric changes, are changes in the met-
ric tensor which are not due to coordinate transformations. For a system
in a space with metric tensor g

µν(x), not necessarily the Minkowski (or
Euclidean) metric, the change of the action is a linear function of the in-
finitesimal change in the metric δgµν(x) (i.e. “Hooke’s Law”). Thus, we can
write the change of the action due to an arbitrary infinitesimal change of
the metric in the form

δS = ∫ d
4
x
√
g T

µν(x) δgµν(x) (3.197)

Below we will identify the proportionality constant, the tensor T µν , with the
conserved energy-momentum tensor. This definition implies that T µν can be
regarded as the derivative of the action with respect to the metric

T
µν(x) ≡ δS

δgµν(x) (3.198)

Since the metric tensor is symmetric, this definition always yields a sym-
metric energy momentum tensor.

In order to prove that this definition of the energy-momentum tensor
agrees with the one we obtained before (which was not unique!) we have to
prove that this form of T µν that we have just defined is a conserved current
for coordinate transformations. Under an arbitrary local change of coordi-
nates, which leave the distance ds unchanged, the metric tensor changes by
the δgµν given above. The change of the action δS must be zero for this
case. We see that if we substitute the expression for δgµν in δS, then an
integration by parts will yield a conservation law. Indeed, for the particular
case of a flat metric, such as the Minkowski or Euclidean metrics, the change
δS is

δS = −
1
2
∫ d

4
x T

µν(x) (gµλ∂νδxλ + gλν∂µδx
λ) (3.199)

since for a global coordinate transformation the Jacobian factor
√
g and

the measure of spacetime d
4
x are constant. Thus, if δS is to vanish for

an arbitrary change δx, the tensor T
µν(x) has to be a locally conserved

current, i.e. ∂µT
µν(x) = 0. This definition can be extended to the case of

more general spaces. We should note, however, that the energy-momentum
tensor can be made symmetric only if the space does not have a property
known as torsion.

Finally, let us remark that this definition of the energy-momentum tensor
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also allows us to identify the spacial components of T
µν with the stress-

energy tensor of the system. Indeed, for a change in geometry which is
does not vary with time, the change of the action reduces to a change of
the total energy of the system. Hence, the space components of the energy
momentum tensor tell us how much does the total energy change for a
specific deformation of the geometry. But this is precisely what the stress
energy tensor is!


