9
Quantization of Gauge Fields

We will now turn to the problem of the quantization of gauge theories. We
will begin with the simplest gauge theory, the free electromagnetic field.
This is an abelian gauge theory. After that we will discuss at length the
quantization of non-abelian gauge fields. Unlike abelian theories, such as the
free electromagnetic field, even in the absence of matter fields non-abelian
gauge theories are not free fields and have highly non-trivial dynamics.

9.1 Canonical quantization of the free electromagnetic field

The Maxwell theory was the first field theory to be quantized. The quanti-
zation procedure of a gauge theory, even for a free field, involves a number of
subtleties not shared by the other problems that we have considered so far.
The issue is the fact that this theory has a local gauge invariance. Unlike
systems which only have global symmetries, not all the classical configu-
rations of vector potentials represent physically distinct states. It could be
argued that one should abandon the picture based on the vector potential
and go back to a picture based on electric and magnetic fields instead. How-
ever, there is no local Lagrangian that can describe the time evolution of the
system in that representation. Furthermore, is not clear which fields, E or
B (or some other field) plays the role of coordinates and which can play the
role of momentum. For that reason, and others, one sticks to the Lagrangian
formulation with the vector potential A, as its independent coordinate-like
variable.
The Lagrangian for the Maxwell theory

1
L=-=

4FWF“” (9.1)
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where F),, = 0,A, — 0,A,, can be written in the form

1
L= §(E2—B2) (9.2)
where
Ej = —80Aj - 8jA0, Bj = _ejkfakAé (93)

The electric field E; and the space components of the vector potential A;
form a canonical pair since, by definition, the momentum II; conjugate to
A] is

oL
(58014](1')

Notice that since £ does not contain any terms which include dyAg, the
momentum Ilj, conjugate to Ay, vanishes

= 500 Ay

A consequence of this result is that Ay is essentially arbitrary and it plays
the role of a Lagrange multiplier. Indeed, it is always possible to find a gauge
transformation ¢

HJ(I) = = 8014] + 8]A0 = —Ej (94)

15 0 (9.5)

Ay = Ag + 9o A= A; - 950 (9.6)
such that AB = 0. The solution is
o = —Ao (9.7)

which is consistent provided that Ay vanishes both in the remote part and
in the remote future, g — +o00.

The canonical formalism can be applied to Maxwell electrodynamics if
we notice that the fields A;(x) and ij(ac') obey the equal-time Poisson
Brackets

{Aj(2), L (x)} pp = 6,6 (& — ') (9.8)
or, in terms of the electric field F,
{Aj(x), Ep(x)}pp = =670 (x — a) (9.9)

Thus, the spatial components of the vector potential and the components
of the electric field are canonical pairs. However, the time component of
the vector field, Ay, does not have a canonical pair. Thus, the quantization
procedure treats it separately, as a Lagrange multiplier field that is imposing
a constraint, that we will see is the Gauss Law. However, at the operator
level, the condition Iy = 0 must then be imposed as a constraint. This fact
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led Dirac to formulate the theory of quantization of systems with constraints
(Dirac, 1966). There is, however, another approach, also initiated by Dirac,
consisting in setting Ay = 0 and to impose the Gauss Law as a constraint
on the space of quantum states. As we will see, this amounts to fixing the
gauge first (at the price of manifest Lorentz invariance).

The classical Hamiltonian density is defined in the usual manner

We find
H(z) = %(EZ +B%) - Ay(2)V - E(z) (9.11)

Except for the last term, this is the usual answer. It is easy to see that the
last term is a constant of motion. Indeed the equal-time Poisson Bracket
between the Hamiltonian density H(x) and \/ - E(y) is zero. By explicit
calculation, we get

H(z) 0V - E(y)  H(x) 6V - E(y)]

3
{H(z),V - E(y)}pp = Jd Z[‘ 6A;(z) OEj(z)  OE;(z) 64;(z)

(9.12)
But
OH(x) _ 3 O0H(x) 0Bi(w) B 3 ~ ow B
54,(2) -] YoB(w) 54,(2) | uBiw)ite - w)ay Vi iw-2)
= —€kyj Vi J'dSka(w)é(:c - w)i(w - z)
(9.13)
Hence
:;SZ((Z)) = ejor Vi (Bp(z)d(x — 2)) = € Bi(z) Vi 6(x —2)  (9.14)

Similarly, we get

oV - E(y)

Thus, the Poisson Bracket is

0V - E(y) _

= Vii(y - 2), i) - 0 (9.15)
J

(H(2),V - E(y)}pp = jd?’z[—eﬂkBk(m Vi 6z - 2) VY 8y - 2)]

= —¢;uuBi(z) Vi Vis(z - y)
= €0 By(x) Vi Vid(x—y) =0
(9.16)
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provided that B(x) is non-singular. Thus, \/ - E(x) is a constant of motion.
It is easy to check that \/ - E generates infinitesimal gauge transformations.
We will prove this statement directly in the quantum theory.

Since / + E(x) is a constant of motion, if we pick a value for it at some
initial time xg = t(, it will remain constant in time. Thus we can write

V - E(z) = p(x) (9.17)

which we recognize to be Gauss’s Law. Naturally, an external charge distri-
bution may be explicitly time dependent and then

d 0 0
drg vV EB) = 5o (V- B) = g pe (@, 70) (9.18)

Before turning to the quantization of this theory, we must notice that Ay
plays the role of a Lagrange multiplier field whose variation yields the Gauss
Law, ¥ - E = 0. Hence, the Gauss Law should be regarded as a constraint
rather than an equation of motion. This issue becomes very important in
the quantum theory. Indeed, without the constraint {/ - E = 0, the theory
is absolutely trivial, and wrong.

Constraints impose very severe restrictions on the allowed states of a
quantum theory. Consider for instance a particle of mass m moving freely in
three dimensional space. Its stationary states have plane wave wave functions
U, (r,zp), with an energy E(p) = %
only on the surface of a sphere of radius R, it becomes equivalent to a rigid

. If we constrain the particle to move

rotor of moment of inertia I = mR* and energy eigenvalues €y, = g—jé(ﬁ +1)
where £ = 0,1,2, ..., and |m| < £. Thus, even the simple constraint r > = R”,
does have non-trivial effects.

Unlike the case of a particle forced to move on the surface of a sphere, the
constraints that we have to impose when quantizing Maxwell electrodynam-
ics do not change the energy spectrum. This is so because we can reduce
the number of degrees of freedom to be quantized by taking advantage of
the gauge invariance of the classical theory. This procedure is called gauge
fizing. For example, the classical equation of motion

A" — 9"(9,4") =0 (9.19)
in the Coulomb gauge, Ag = 0 and {/ - A = 0, becomes
2
0A; =0 (9.20)
However the Coulomb gauge is not compatible with the Poisson Bracket

{45(2),11;,(2")},, = 8;50(x — @) (9.21)
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since the spatial divergence of the delta function does not vanish. It will
follow that the quantization of the theory in the Coulomb gauge is achieved
at the price of a modification of the commutation relations.

Since the classical theory is gauge-invariant, we can always fix the gauge
without any loss of physical content. The procedure of gauge fixing has the
attractive that the number of independent variables is greatly reduced. A
standard approach to the quantization of a gauge theory is to fix the gauge
first, at the classical level, and to quantize later.

However, a number of problems arise immediately. For instance, in most
gauges, such as the Coulomb gauge, Lorentz invariance is lost, or at least
it is manifestly so. Thus, although the Coulomb gauge, also known as the
radiation or transverse gauge, spoils Lorentz invariance, it has the attractive
feature that the nature of the physical states (the photons) is quite trans-
parent. We will see below that the quantization of the theory in this gauge
has some peculiarities.

Another standard choice is the Lorentz gauge

9,A" =0 (9.22)

whose main appeal is its manifest covariance. The quantization of the system
is this gauge follows the method developed by and Gupta and Bleuer. While
highly successful, it requires the introduction of states with negative norm
(known as ghosts) which cancel all the gauge-dependent contributions to
physical quantities. This approach is described in detail in the book by
Itzykson and Zuber (Itzykson and Zuber, 1980).

More general covariant gauges can also be defined. A general approach
consists not on imposing a rigid restriction on the degrees of freedom, but
to add new terms to the Lagrangian which eliminate the gauge freedom. For
instance, the modified Lagrangian

1
-3 Fjv
is not gauge invariant because of the presence of the last term. We can
easily see that this term weighs gauge equivalent configurations differently
and the parameter 1/« plays the role of a Lagrange multiplier field. In fact,
in the limit & — 0 we recover the Lorentz gauge condition. In the path

L= + 5 (8, 4" (2))? (9.23)

integral quantization of the Maxwell theory it is proven that this approach
is equivalent to an average over gauges of the physical quantities. If a = 1,
the equations of motion become very simple, i.e. 8214” = 0. This is the
Feynman gauge. In this gauge the calculations are simplest although, here
too, the quantization of the theory has subtleties (such as ghosts, etc.).
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Still, within the Hamiltonian or canonical quantization procedure, a third
approach has been developed. In this approach one fixes the gauge Ay = 0.
This condition is not enough to eliminate completely the gauge freedom. In
this gauge a residual set of time-independent gauge transformations are still
allowed. In this approach quantization is achieved by replacing the Poisson
Brackets by commutators and Gauss Law condition becomes now a con-
straint on the space of physical quantum states. So, we quantize first and
constrain later.

In general, it is a non-trivial task to prove that all the different quantiza-
tions yield a theory with the same physical properties. In practice what one
has to prove is that these different gauge choices yield theories whose states
differ from each other by, at most, a unitary transformation. Otherwise,
the quantized theories would be physically inequivalent. In addition, the re-
covery of Lorentz invariance may be a bit tedious in some cases. There is
however, an alternative, complementary, approach to the quantum theory in
which most of these issues become very transparent. This is the path-integral
approach. This method has the advantage that all the symmetries are taken
care of from the outset. In addition, the canonical methods encounter very
serious difficulties in the treatment of the non-abelian generalizations of
Maxwell electrodynamics.

We will consider here two canonical approaches: 1) quantization in the
Coulomb gauge and 2) canonical quantization in the Ay = 0 gauge in the
Schréodinger picture.

9.2 Coulomb gauge

Quantization in the Coulomb gauge follows the methods developed for the
scalar field very closely. Indeed, the classical constraints Ag = 0 and V- A =
0 allow for a Fourier expansion of the vector potential A(x,zq). In Fourier
space, we write

_(_d» .
A(x,x0) = JWA(PJO)GXP(ZP ‘x) (9.24)

where A(p,zy) = A*(—p, o). The Maxwell equations yield the classical
equation of motion, the wave equation

O’ Az, 7o) =0 (9.25)
The Fourier expansion is consistent only if the amplitude A(p, xy) satisfies

8 A(p, o) + p A(p,x0) = 0 (9.26)
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The constraint V/ -+ A = 0 in turn becomes the transversality condition
p-A(p,29) =0 (9.27)
Hence, A(p,xg) has the time dependence
A(p,20) = A(p)e™™ + A(~p)e """ (9.28)

where pg = |p|. Then, the mode expansion takes the form

3

A(x,z9) = J &[A*(p)eilm + A(p)e_ip'x] (9.29)
(27)%2po

where p - x = pux“ . The transversality condition, Eq.(9.27), is satisfied by

introducing two polarization unit vectors €;(p) and e5(p), such that €; €5 =

€1°p=¢€-p=0,and e% = eg = 1. Hence, if the amplitude A has to be

orthogonal to p, it must be a linear combination of €; and es, i.e.

A(p) = ) €u(p)aa(p) (9.30)

a=1,2

where the factors a,(p) are complex amplitudes. In terms of a,(p) and
ar(p) the Hamiltonian looks like a sum of oscillators.

In the coulomb gauge, the passage to the quantum theory is achieved by
assigning to each amplitude a,(p) a Heisenberg annihilation operator a,(p).
Similarly a. (p) maps onto the adjoint operator, the creation operator &(TX (p).
The expansion of the vector potential in modes now is

3 . .
Ay = [ 22 S e aap)e ™ +abp)e™] (031

3
(277) 2p0 a=1,2

with p® = 0 and pg = |p|. The operators a,(p) and &L(p) satisfy canonical
commutation relations

[aa(p), & (p")] =2p(27)*5(p — p")
[ia(P),aw(p")] =[ah(p), & (p")] = 0 (9.32)

It is straightforward to check that the vector potential A(x) and the electric
field E(x) obey the (unconventional) equal-time commutation relation

V;Vy
vQ

where the symbol 1/ VQ represents the inverse of the Laplacian, i.e. the

[A;(x), Ej(z')] = —i(ajj,— )53(:3-:3’) (9.33)
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Laplacian Green function. In the derivation of this relation, the following
identity was used

(o) PiPj'
> eh(p)eh(p) = 0 — o (9.34)

a=1,2

These commutation relations are an extension of the canonical commutation
relation, and are a consequence of the transversality condition, \/ - A =0
In this gauge, the (normal-ordered) Hamiltonian is

A= | ——po y aL(p)as(p) (9.35)
D a=1,2

The ground state, the vacuum state |0), is annihilated by both polarizations
i, (p)|0) = 0. The single-particle states are dL(p)|0) and represent trans-
verse photons with momentum p, energy py = |p| and with the two possible
linear polarizations labelled by « = 1,2. Circularly polarized photons can
be constructed in the usual manner.

The Coulomb gauge has the advantage that, in this picture, the electro-
magnetic field can be regarded as a collection of linear harmonic oscillators
which are then quantized. This, of course, is a simple reflection of the fact
that Maxwell electrodynamics is a free field theory. It has, however, several
problems. One is that Lorentz invariance is violated from the outset, and
has to be recovered afterwards in the computation of observables. The other
is that, as we will discuss below, in non-abelian theories the Coulomb gauge
does not exist globally. For these reasons, its usefulness is essentially limited
to the Maxwell theory.

9.3 The gauge Ay =0

In this gauge we will apply directly the canonical formalism. In what follows
we will fix Ag = 0 and associat(f to the three spatial components A; of the
vector potential an operator, A; which acts on a Hilbert space of states.
Similarly, to the canonical momentum II; = —F;, we assign an operator II;.
These operators obey the equal-time commutation relations

[A;(x),T;(z")] = i6(z — =)o, (9.36)

Hence, the vector potential A and the electric field E do not are canoni-
cally conjugate operators, and do not commute with each other,

[Aj(z), By(z')] = —id;p0(x — ) (9.37)

Let us now specify the Hilbert space to be the space of states |¥) with
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wave functions which, in the field representation, have the form W({A4;(x)}).
When acting on these states, the electric field is the functional differential
operator

J

In this Hilbert space, the inner product is

({4;(2)}{A;(x)})) =11, ;6 (Aj(x) — A;j(x)) (9.39)

This Hilbert space is actually much too large. Indeed states with wave func-
tions that differ by time-independent gauge transformations

Vo({4;(x)}) = ¥({4;() = V;é(x)}) (9.40)

are physically equivalent since the matrix elements of the electric field op-
erator E;(x) and magnetic field operator Bj(x) = €;r Vi Ae(x) are the
same for all gauge-equivalent states, i.e.

(U ({A; (@)D E(@) |96 ({A;(@)})) = (¥ ({A; (@)} E;(2) | T ({4;(2)}))
(U ({A; (@)D)B;(@) | W4 ({A;(@)})) = (V' ({A;(@)})] Bj (@)W ({A;(x)}))

(9.41)
The (local) operator Q(x)
Q(z) = V - E(z) (9.42)
commutes locally with the Hamiltonian and with each other
[Q(z),H]=0, [Q(z),Q(¥)]=0 (9-43)

Hence, all the local operators Q(w) can be diagonalized simultaneously with
H.

Let us show now that Q(x) generates local infinitesimal time-independent
gauge transformations. From the canonical commutation relation

[4;(2), Ep(x')] = =id;5(x - ) (9.44)
we get (by differentiation)
[Aj(m),Q(iB')] =[A;(z), V,;Ep(z N =i Vid(x—x D (9.45)

Hence, we also find

[4 j dz¢(2)Q(z), Aj(z)] = - j dz¢(z) V(2 —x) = V,;0(x) (9.46)
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and

| Q) | [ azo2100) _

J

i [ dz V1 o(2)En(z) z'jdz> V1 6(2)Bnl2)
=e Ai(x) e

=A;(z) + V;0(x) (9.47)

The physical requirement that states that differ by time-independent gauge
transformations be equivalent to each other leads to the demand that we
should restrict the Hilbert space to the space of gauge-invariant states. These
states, which we will denote by |Phys), satisfy

Q(x)|Phys) = V - E(z)|Phys) = 0 (9.48)

Thus, the constraint means that only the states which obey the Gauss Law
are in the physical Hilbert space. Unlike the quantization in the Coulomb
gauge, in the Ag = 0 gauge the commutators are canonical and the states
are constrained to obey the Gauss Law.

In the Schrodinger picture, the eigenstates of the system obey the Schrodinger
equation

1 5 2
where W[A] is a shorthand for the wave functional W({A;(x)}). In this
notation, the constraint of Gauss law is

VB (2)U[A] =iV —

This constraint can be satisfied by separating the real field A;(x) into lon-

U[A]=0 (9.50)

gitudinal AJL(:L') and transverse AJT(:c) parts

3 .
Aj(x) = AV () + Al (2) = (ZTP;?)(AJL(p)JrAJT(p))a’” (9.51)

where Af () and A;‘-F (x) satisfy

VAl (®)=0 Al(z) = V;é(x) (9.52)

and ¢(x) is, for the moment, arbitrary. In terms of AJL and A;‘-F the constraint
of Gauss law simply becomes

. 0
Vi

—5AJL($)\II[A] =0 (9.53)
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and the Hamiltonian now is
52 2

—_ 3 —_ — -
H = J'd P 3 SAT (p)SAT (-p) JAX(p)SAY(-p) '

P’ 45 (p)A] (-p)]

(9.54)
We satisfy the constraint by looking only at gauge-invariant states. Their
wave functions do not depend on the longitudinal components of A(x).
Hence, W[ A] = \I/[AT]. When acting on those states, the Hamiltonian is

1 5 2,7 T
H\Ilsz?’p— - +p Al (p)AS (-p) |U = ET  (9.55
5| AT TP A )] (9.55)
Let €1(p) and e3(p) be two vectors which together with the unit vector
n, = p/|p| form an orthonormal basis. Let us define the operators (o =
1,2;5=1,2,3)

a(p, ) = & (p)[——— + |plA] (p)]

m

a'(p,a) = 5 (p)[~

\/W

6AT(— )

T
MTU Ip|A; (—p)
(9.56)

These operators satisfy the commutation relations

[a(p,a),a'(p',a')] = 6aurd’ (P —p") (9.57)

In terms of these operators, the Hamiltonian H and the expansion of the
transverse part of the vector potential are

= a2y )0 + a0 (p,0))

=1,2

T _ AT —ip-x
HORS mazwea(m i(p, )™ + il (p,a)e ")

(9.58)

We recognize these expressions to be the same ones that we obtained before
in the Coulomb gauge (except for the normalization factors).

It is instructive to derive the wave functional for the ground state. The
ground state |0) is the state annihilated by all the oscillators a(p, o). Hence
its wave function W[ A] satisfies

({4;(z)}a(p,a)[0) =0 (9.59)
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This equation is the functional differential equation

J
Z(p)[MTL(_p) AT @ITAT D =0 (9.60)

It is easy to check that the unique solution of this equation is
1 (3 T T
Wo[4] = N expl-3 [ @*plp| AT (94T (-p)] (9.61)

Since the transverse components of A;(p) satisfy

Al () < ., PEAeD) _ (DX Alp) 9.62
)= e = (250 >j 962
we can write Uo[ A] in the form
1 d3p
WAl = Nexpl-3 [ TF (px A@) - (px AC-pD]  (963)

It is instructive to write this wave function in position space, i.e. as a func-
tional of the configuration of magnetic fields {B(x)}. Clearly, we have

3 .
px ) =i [ ST (V, <A@ e
3 .
px ACp) =i [ ST (V, <A@ " (9.64)

By substitution of these identities back into the exponent of the wave func-
tion, we get

W[A] = Nexp( - 5 Jd%« J @' Be)- Bz)G(x-a)) (0.6

where G(z, ') is given by

d3p e—z‘p-(x—a:’)
(2m)*  Ipl
This function has a singular behavior at large values of |p|. We will define
a smoothed version G (z — ') to be

Glz-z') = (9.66)

d3p 6—ip~(a:—a} ) 6—|p|/A

(2m)*  Ipl

Galz—x') = (9.67)

which cuts off the contributions with |p| > A. Also, Gy(x,x') formally
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goes back to G(x — ') as A » 00. Gy(x — x') can be evaluated explicitly
to give

1 © . —t/A|lz-a']
G -z =—J dt t
NEEED) ol o sint e
1 1
- 27T2|w_w,|21m[ — _i] (9.68)
Alz—'|
Thus,
1
lim Gp(z-2') = —— 9.69
Al—{%o NCEED 27r2|x—ac'|2 ( )
Hence, the ground state wave functional W[ A] is
B B
W[ A] = Nexp J J PG ,(2"”)) (9.70)
|z — |

which is only a functional of the configuration of magnetic fields.

9.4 Path integral quantization of gauge theories

We have discussed at length the quantization of the abelian gauge theory,
i.e. Maxwell electromagnetism, within canonical quantization in the Ag =0
gauge and a modified canonical formalism in the Coulomb gauge. Although
conceptually what we have done is correct, it poses a number of questions.

The canonical formalism is natural in the gauge Ay = 0, and can be gen-
eralized to other gauge theories. However, this gauge is highly non-covariant
and it is necessary to prove covariance of physical observables at the end. In
addition, the gauge field propagator in this gauge is very complicated.

The particle spectrum is most transparent in the transverse (or Coulomb)
gauge. However, in addition of being non-covariant, it is not possible to gen-
eralize this gauge to non-abelian gauge theories (or even to abelian gauge
theories on a compact gauge group) due to subtle topological problems
known as Gribov ambiguities (or Gribov “copies”). The propagator is equally
awful in this gauge. The commutation relations in real space look quite dif-
ferent from those in scalar field theory. In addition, for non-abelian gauge
groups, even in the absence of matter fields, the theory is already non-linear
and needs to be regularized in a manner in which gauge invariance is pre-
served. Although it is possible to use covariant gauges, such as the Lorentz
gauge 8MA” = (, the quantization of the theory is these gauges requires an
approach, known as Gupta-Bleuer quantization, of difficult generalization.

At the root of this problems is the issue of quantizing a theory which has
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a local (or gauge) invariance in a manner in which both Lorentz and gauge
invariance are kept explicitly. It turns out that path-integral quantization is
the most direct approach to deal with these problems.

We will now construct the path integral for the free electromagnetic field.
However, formally the procedure that we will present will hold, at least
formally, for any gauge theory.

We will begin with the theory quantized canonically in the gauge Ay = 0
(Dirac, 1966). We saw above that, in the gauge Ay = 0, the electric field E
is (minus) the momentum canonically conjugate to the vector potential A,
the spatial components of the gauge field, and both fields obey equal-time
canonical commutation relations

[E(x), Ap(a')] = i6° (= - =) (9.71)

In addition, in this gauge, the Gauss Law becomes a constraint on the space
of states, i.e.

YV : E(x)|Phys) = Jy(x)|Phys) (9.72)

which defines the physical Hilbert space. Here Jy(x) is a charge density
distribution. In the presence of a set of conserved sources J,(x), that satisfy
OuJ # =0, the Hamiltonian of the free field theory is

. 1
H=Jd3x§(E2+BQ)+Jd3:rJ-A (9.73)

We will construct the path-integral in the Hilbert space of gauge-invariant
states defined by the condition of Eq.(9.72).
Let su denote by Z[J,] the partition function

f -1 J d.’L‘()ﬁ -1 J dIoﬁ N
Z[J]=trTe =tr|Te P (9.74)

where tr' means a trace (or sum) over the space of states that satisfy the
Gauss Law, Eq.(9.72). We implement this constraint by means of the oper-
ator P that projects onto the gauge-invariant states,

P=[16(V - E) - Jo(z)) (9.75)

We will now follow the standard construction of the path integral, while
making sure that we only sum over histories that are consistent with the
constraint. In principle all we need to do is to insert complete sets of states
which are eigenstates of the field operator A(x) at all intermediate times.
These states, denoted by |[{A(x,z()}), are not gauge invariant, and do not
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satisfy the constraint. However, the projection operator P projects-out the
unphysical components of these states.

Hence, if the projection operator is included in the evolution operator,
the inserted states actually are gauge-invariant. Thus, to insert at every
intermediate time :rlg (k=1,...,N with N - 00 and Azy — 0) a complete
set of gauge-invariant states, amounts to writing Z[.J] as

N
2= [ PAsa.ah)
k=1
{Aj(@, )M (1 = idao )| [0V - Bla,20) = Jo(w: 70)) [{A;(@.2™)))
) (9.76)

As an operator, the projection operator Pis naturally spanned by the eigen-
states of the electric field operator |[{E(x,xq)}), i.e.

[ [6(V - E(x,20) - Jo(x,20)) =

| PE@.w0) 1{B (@, 20 DB 200} [ 5V - Bw,a0) = Jo.a0)
i (9.77)

The delta function has the integral representation
[ [6(V - E(@,20) - Jo(z,20)) =
i [ ' Ag(a.0) (V- Bla,0) = Jo(a.0))
= N J' DAO($, .%‘0)6

(9.78)

Hence, the matrix elements of interest become
[DAH (A, zo)} (1 - idaoB) [ 6(5 85 = Jo) {A(, 2 + Azg)})
- [ DADADE A, )} Bz, co))) (B (e, )} (A2, a0 + As)})

X exp [iA:ro J I’z Ag(x,20) (V - E(,x0) — JO(xva))]

s oxp[ - LMz 1B )
{A(, 20)H{E (2, 20)})

(9.79)
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The overlaps are equal to

) - ijd?)x A(x,xq) - E(x,xq)

({A(z, 20)}{E(z, 20)} (9.80)
Hence, we find that the product of the overlaps is given by
[T {A@ 20)}{E(z, 20)})({E(z, 20)}{ A(2, 70 + Azg)}) =
_ 6—7: J d.%‘o J' dSZE E(m, Io) . 8014(1‘, Io) (981)

The matrix elements of the Hamiltonian are

<{A($a$0)}|ﬁ|{E($,x0)}) _ 3 1 ) ) .
e = [ 3£ 4 5)+ 5 4] o

2
Putting everything together we find that the path integral expression for
Z[J] has the form

iS[A,, E]

217] = J'DAMDE ¢ (9.83)

where

DA, = DADA, (9.84)

and the action S[A,,, E] is given by

S[A,,E] = Jd“x[—E - 0 A - % (E*+B*)-J-A+4,(V -E- JO)}
(9.85)
Notice that the Lagrange multiplier field Ay, which appeared when we in-
troduced the integral representation of the delta function, has become the
time component of the vector potential.
Since the action is quadratic in the electric fields, we can integrate them
out explicitly to find

JDE ez'Jd%(—%Ez —E-(0,A + VAO)) _

1
i J' d4x§ (—90A - V Ap)°
= const. e

(9.86)
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We now collect everything and find that the path integral is

217] = JDAH eij diet (9.87)

where the Lagrangian is

1 v
L=—-3F,F" +J,4" (9.88)

which is what we should have expected. We should note here that this formal
argument is valid for all gauge theories, abelian or non-abelian. In other
words, the path integral is always the sum over the histories of the field A,
with a weight factor which is the exponential of i/h times the action S of
the gauge theory.

Therefore, we found that, at least formally, we can write a functional
integral which will play the role of the generating functional of the N-point
functions of this theories,

(O] T Ay, (z1) ... Ay, (zx)]0) (9.89)

9.5 Path integrals and gauge fixing

The expression for the path integral in Eq.(9.87) is formal because we are
summing over all histories of the field without restriction. In fact, since
the action S and the integration measure DA, are both gauge invariant,
histories that differ by gauge transformations have the same weight in the
path integral, and the partition function has an apparent divergence of the
form v(G)V, where v(G) is the volume of the gauge group G and V is the
(infinite) volume of space-time.

In order to avoid this problem we must implement a procedure that re-
stricts the sum over configurations in such a way that configurations which
differ by local gauge transformations are counted only once. This procedure
is known as gauge fixing. We will follow that approach introduced by L. Fad-
deev and V. Popov (Faddeev and Popov, 1967; Faddeev, 1976). Although
the method works for all gauge theories, the non-abelian theories have sub-
tleties and technical issues that we will discuss below. We will begin with a
general discussion of the method, and then we will specialize it first for the
case of Maxwell theory, the U(1) gauge theory without matter fields, and
later to the case of a general compact gauge group.

Let the vector potential A, be a field that takes values in the algebra of a
gauge group G, i.e. A, is a linear combination of the group generators. Let
U(x) be an unitary-matrix field that takes values on a representation of the
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group G (please recall our earlier discussion on this subject in section 3.6).
For the abelian group U(1), we have

U(z) = ¢4() (9.90)
where ¢(x) is a real (scalar) field. A gauge transformation is, for a group G
AL =UAU —iva,UT (9.91)

For the abelian group U(1) we have
Ap = A, + 8,0 (9.92)

In order to avoid infinities in Z[J], we must impose restrictions on the
sum over histories such that histories that are related via a gauge transfor-
mation are counted exactly once. In order to do that we must find a way
to classify the configurations of the vector field A, into classes. We will do
this by defining gauge fixing conditions. Each class is labelled by a repre-
sentative configuration and other elements in the class are related to it by
smooth gauge transformations. Hence, all configurations in a given class are
characterized by a set of gauge invariant data, such as field strengths in the
case of the abelian theory. The set of configurations that differ from each
other by a local gauge transformation belong to the same class. We can think
of the class as a set obtained by the action on some reference configuration
by the gauge group, and the elements of a class constitute an orbit of the
gauge group. Mathematically, the elements of the gauge class form a vector
bundle.

We must choose gauge conditions such that the theory remains local and,
if possible, Lorentz covariant. It is essential that, whatever gauge condition
we use, that each class is counted exactly once by the gauge condition. It
turns out that for the Maxwell gauge theory this is always (and trivially)
the case. However, in non-abelian theories, and in gauge theories with an
abelian compact gauge group, there are many gauges in which a class may
be counted more than once. The origin of this problem is a topological
obstruction first shown by I. Singer. This question is known as the Gribov
problem. The Coulomb gauge is well known to always have this problem,
except for the trivial case of the Maxwell theory.

Finally we must also keep in mind that we are only fixing the local gauge
invariance, but we should not alter the boundary conditions since they rep-
resent physical degrees of freedom. In particular, if the theory is defined
on a closed manifold, e.g. a sphere, tori, etc., large gauge transformations,
which wrap around the manifold, represent global degrees of freedom (or
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states). Large gauge transformations play a key role on gauge theories at
finite temperature, where the transformation wrap around the (finite and
periodic) imaginary time direction. Also, there is a class of gauge theories,
known as topological field theories, whose only physical degrees of freedom
are represented by large gauge transformations on closed manifolds. We will
discuss these theories in chapter 22.

ClaSS\q ‘
l u
ra i or ations

re\gfesentatlve of
a class

l
l

Figure 9.1 The gauge fixing condition selects a manifold of configurations.

How do we impose a gauge condition consistently? We will do it in the
following way. Let us denote the gauge condition by that we wish to impose
by

9(4) =0 (9.93)

where g(A,) is a local differentiable function of the gauge fields and/or of
their derivatives. Examples of such local conditions are g(A4,) = 9, A" for
the Lorentz gauge, or g(A,) = n, A" for an axial gauge.

The discussion that follows is valid for all compact Lie groups G of volume
v(G). For the special case of the Maxwell gauge theory, the gauge group is
U(1). Up to topological considerations, the group U(1) is isomorphic to
the real numbers R, even though the volume of the compact U(1) group is
finite, v(U (1)) = 27, while for the non-compact case the group are the real
numbers R whose “volume” is infinite, v(R) = oo

Naively, to impose a gauge condition would mean to restrict the path
integral by inserting Eq. (9.93) as a delta function in the integrand,

iS[A, J]

Z[J] ~ JDAH §(g(AL) e (9.94)
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We will now see that in general this is an inconsistent (and wrong) prescrip-
tion. Following Faddeev and Popov, we begin by considering the expression
defined by following integral

A;'[A,] = JDU 5(9(A)) (9.95)

where Ag(x) are the configurations of gauge fields related by the gauge
transformation U(x) to the configuration A,(x), i.e. we move inside one
class. In other words, the integral of Eq.(9.95) is a sum over the orbit of
the gauge group. Thus, by construction, Aj[A,] depends only on the class
defined by the gauge-fixing condition g or, what is the same, it is gauge-
invariant.

Let us show that A;l[Au] is gauge invariant. We first observe that the
integration measure DU, called the Haar measure, is invariant under the
composition rule U - UU ',

DU = D(UU") (9.96)

where U' is and arbitrary but fixed element of G. For the case of G = U(1),
U = exp(i¢) and DU = D¢.
Using the invariance of the measure, Eq. (9.96), we can write

ATAYT = JDU 5(9(,45'%) - [DU” 5(g(A,’{")) = A AL (997)

where we have set U'U = U". Therefore Ag_l[AM] is gauge invariant, i.e. it
is a function of the class and not of the configuration A, itself. Obviously
we can also write Eq. (9.95) in the form

U
1=A,[4,] J'DU 5 (9(40)) (9.98)
We will now insert the number 1, as given by Eq. (9.98), in the path integral

for a general gauge theory to find

Z[J]:J'DAH x 1 x SlAJ]

_ JDAH A[A,] JDU 5(9(aLy) SAIT (g g9
We now make the change of variables
A, — Ay (9.100)
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where U' = U '(x) is an arbitrary gauge transformation, and find

1 N U’ 1 1
Z[J] = JDUJDAZ STAT ] Ag[AZ]5<g(AZU)) (9.101)
(Notice that we have changed the order of integration.) We now choose
U'=U _1, and use the gauge invariance of the action S[ A, J], of the measure
DA,, and of Aj[A] to write the partition as

Z[J] = U DU} JDAH AJALT6(g(A,)) A (9.102)
The factor in brackets in Eq. (9.102) is the infinite constant
J'DU = (@) (9.103)

where v(G) is the volume of the gauge group and V' is the (infinite) volume
of space-time. This infinite constant is nothing but the result of summing
over gauge-equivalent states inside each class.

Thus, provided the quantity Ay[ A, ] is finite, and that it does not vanish
identically, we find that the consistent rule for fixing the gauge consists
in dividing-out the (infinite) factor of the volume of the gauge group but,
more importantly, to insert together with the constraint § (g(A4,,)) the factor
Ay[A,] in the integrand of Z[J],

154, J] (9.104)

2[7] ~ JDAH AJA]5(g(4,)) e

Therefore the measure DA, has to be understood as a sums over classes of
configurations of the gauge fields and not over all possible configurations.

We are only left to compute Ay[A,]. We will show now that Ag[A,] is
a determinant of a certain operator, and is known as the Faddeev-Popov
determinant. We will only compute first this determinant for the case of
the abelian theory U(1). Below we will also discuss the non-abelian case,
relevant for Yang-Mills gauge theories.

We will compute Ag[A,] by using the fact that g[Ag] can be regarded
as a function of U(xz) (for A, () fixed). We will now change variables from
U to g. The price we pay is a Jacobian factor since

DU = Dg Det

sU
E‘ (9.105)

where the determinant is the Jacobian of the change of variables. Since this is
a non-linear change of variables, we expect a non-trivial Jacobian. Therefore
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we can write

_ oU
A;'TA,] = JDU 3(9(A)) = JDg Det El 5(g) (9.106)
and we find
-1 B oU
Ay [Au] = Det 3 o (9.107)
or, conversely
og
Ag[A,] = Det SU - (9.108)

All we have done thus far holds for all gauge theories with a compact
gauge group. We will specialize our discussion first to the case of the U(1)
gauge theory, Maxwell electromagnetism. We will discuss how this applies
to non-abelian Yang-Mill gauge theories shortly below.

For example, for the particular case of the abelian U(1) gauge theory, the
Lorentz gauge condition is obtained by the choice g(A,,) = §,A4". Then, for
a general U(1) gauge transformation U(z) = exp(i¢(x)), we get

g(A) = 9, (A" + 9"¢) = 9,A4" + ¢ (9.109)
Hence,
dg(x) a2 .
20(0) 0°6(x —vy) (9.110)

Thus, for the Lorentz gauge of the abelian theory, the Faddeev-Popov de-
terminant is given by

A [A,] = Detd” (9.111)

which is a constant independent of A,. This is a peculiarity of the abelian
theory and, as we will see below, it is not true in the non-abelian case.

Let us return momentarily to the general case of Eq. (9.104), and modify
the gauge condition from g(A4,) = 0 to g(A,) = c(x), where c(x) is some
arbitrary function of x. The partition function now reads

iS[A, ]

Z[J] ~ JDAM AgLA,16(g(A,) —c(x)) e (9.112)

We will now average over the arbitrary functions with a Gaussian weight
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(properly normalized to unity)

4 0(95)2

Zo[J] = ./\/'JDAH Dc e_ij “ T2 AG[A]6(9(AL) —c(z)) e

iS[A, J]

1
in4:p [C[A, J)- o (g(Au))Q}
= ./\/'JDAM Ay(A,) e (9.113)
From now on we will restrict our discussion to the U(1) abelian gauge
theory (the electromagnetic field) and g(A,) = 9, A". From Eq. (9.113) we
find that in this gauge the Lagrangian is

1 o
-1 F.,
The parameter « labels a family of gauge fixing conditions known as the
Feynman-"t Hooft gauges. For a — 0 we recover the strong constraint 8NA“ =
0, the Lorentz gauge. From the point of view of doing calculations the sim-
plest is the gauge a = 1, the Feynman gauge, as we will see now.

1
Lo = + LA = 5= (9,4")° (9.114)

After some algebra is straightforward to see that, up to surface terms, in
this family of gauges parametrized by « the Lagrangian is equal to

(0%

1 v - 1 v
Lo=FA, [g“ 9 - —— "0 } A, +J,A" (9.115)

and the partition function reduces to

Jd% Lo[A,J]

Z[J]= N Det[5"] J'DAH ¢ (9.116)
Hence, in a general gauge labelled by a, we get
Z[J]= N Det[9”] Det |:gW & - O‘T_l a”a”r/2
X exp (% fd“z f d'y I (@) G (a—y) L) (0117)
where
G (x—y) = (x| (9‘” o - aT_l 3“3V)_1 ly) (9.118)

is the propagator in this gauge, parametrized by «. By inspection we see
that the propagator of the gauge field G, (x — y), in the Feynman-"t Hooft
gauge parametrized by «, is related to the vacuum expectation value of the
gauge fields by

Gz —y) = i(0]TA,(2) A, (y)|0) (9.119)
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The form of Eq. (9.117) may seem to imply that Z[.J] depends on the
choice of gauge. However, this cannot be correct since the path integral is,
by construction, gauge-invariant. We will show in the next subsection that
gauge invariance is indeed protected. This result comes about because J,, is a
conserved current, and as such it satisfies the continuity equation 9,,J H=0.

For the Feynman-"t Hooft family of gauges, the propagator takes the form

G =1) = =[ ¢ + (= DT |6V -) (9.120)

where G(O)(x — y) is the propagator of the free massless scalar field and
hence satisfies the Green function equation

82G(0)(:r —y) = (54(:1: -y) (9.121)

where we set the mass of the scalar field to zero.

Thus, as expected for a free field theory, Z[J] is a product of two factors:
a functional (or fluctuation) determinant, and a factor that depends solely
on the sources .J, which contains all the information on the correlation
functions. For the case of a single scalar field we also found a contribution
in the form of a determinant factor but its power was —1/2. Here there
are two such factors. The first one is the Faddeev-Popov determinant. The
second one is the determinant of the fluctuation operator for the gauge field.
However, in the Feynman gauge, o = 1, this operator is just g"* V82, and its
determinant has the same form as the Faddeev-Popov determinant except
that it has a power —4/2. This is what one would have expected for a theory
with four independent fields (one for each component of A,). The Faddeev-
Popov determinant has power +1. Thus the total power is just 1-4/2 = —1,
which is the correct answer for a theory with only two independent (real)
fields.

9.6 The propagator

For general a, G, (x — ) is the solution of the Green function equation

v -1 v
o - S0 |G- ) = s - 0 (9.122)

Notice that in the special case of the Feynman gauge, o = 1, this equation
becomes

—82GW(x —y) = gW54(:r -y) (9.123)
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Hence, in the Feynman gauge, G, (z — y) takes the form
(@ -y) = =g" V@ -y) (9.124)
where G(O)(x — y) is just the propagator of a free massless scalar field, i.e.
82G(0)(:r —y) = (54(96 -y) (9.125)
However, in a general gauge, the propagator of the gauge fields
G (z —y) = i(0|TA,(2)A,(y)]0) (9.126)

does not coincide with the propagator of a scalar field. Therefore, G, (2 —y),
as expected, is a gauge-dependent quantity.

In spite of being gauge-dependent, the propagator does contain physi-
cal information. Let us examine this issue by calculating the propagator in
a general gauge a. The Fourier transform of G, (z —y) in D space-time
dimensions is

D .
GHV(‘T - y) = J (;lﬂ_—)pD a;u/(p) e—zp . (.’L‘ B y) (9.127)

This a solution of Eq. (9.122) provided @W (p) satisfies

v o — 1 v ~
[9“ P - ——'p }Gm(p) = g\ (9.128)

The formal solution is

pupy} (9.129)

~ 1
&) = —[g“”+<a—1)
e p2 p2

In space-time the form of this (still formal) solution is given by Eq. (9.120).
In particular, in the Feynman gauge « = 1, (formally) we get
q"

G (p) = o (9.130)

whereas in the Lorentz gauge we find instead
1

R
~L v pp
G (p) = [g“ - } (9.131)
1 ' 7’

Hence, in all cases there is a pole in p2 in front of the propagator and a
matrix structure that depends on the gauge choice. Notice that the matrix
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in brackets in the Lorentz gauge, o — 0, becomes the transverse projection
operator which satisfies

n v

Py [g“” -2 }: 0 (9.132)
p

which follows from the gauge condition 8HA” =0.

The physical information of this propagator is contained in its analytic
structure. It has a pole at p° = 0 which implies that py = V/p2 = |p| is the
singularity of auy(p). Hence the pole in the propagator tells us that this
theory has a massless particle, the photon.

To actually compute the propagator in space-time from G, v (p) requires
that we define the integrals in momentum space carefully. As it stands, the
Fourier integral Eq. (9.127) is ill-defined due to the pole in éu,, (p) at p° = 0.
A proper definition requires that we move the pole into the complex plane by
shifting p2 - p2 +ie, where € is real and € —» 07. This prescription yields the
Feynman propagator. We will see in the next chapter that this rule applies
to any theory and that it always yields the vacuum expectation value of
the time ordered product of fields. For the rest of this section we will use
the propagator in the Feynman gauge which reduces to the propagator of a
scalar field. This is a quantity we know quite well, both in Euclidean and
Minkowski space-times.

9.7 Physical meaning of Z[J] and the Wilson loop operator

We discussed before that a general property of the path integral of any
theory is that, in Euclidean space-time, Z[0] is just

TE,

Z[0] = (0]0) ~ e~ (9.133)

where T is the time span, which in general will be such that 7' — oo (beware
that here T' is not the temperature!), and Ej is the vacuum energy. Thus, if
the sources J,, are static (or quasi-static) we get instead

2[7] _ ~T[E(J) - Ey]
Z[0]

Thus, the change in the vacuum energy due to the presence of the sources

(9.134)

is ll 201
T " Z[0]

As we will see, the behavior of this quantity has a lot of information about

U(J) = Bo(J) = By = = Tim (9.135)

the physical properties of the vacuum (i.e. the ground state) of a theory.
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Quite generally, if the quasi-static sources J, are well separated from each
other, U(J) can be split into two terms: a self-energy of the sources, and an
interaction energy,

U(J) = Eself—energy[J] + Vint[J] (9.136)

adiabatic

/\ switching off

\/ adiabatic

turning on

Figure 9.2 The Wilson loop operator can be viewed as representing a pair
of quasi-static sources of charge te separated a distance R from each other.

As an example, we will now compute the expectation value of the Wilson
loop operator,

Zeqs d:EuA“
Wr = (0| Pe r [0) (9.137)

where I' is the closed path in space-time shown in Fig.9.2, and P is the
path-ordering symbol. Physically, what we are doing is looking at the elec-
tromagnetic field created by the current

J(x) =ed(x, —s,) 3, (9.138)

where s, is the set of points of space-time on the loop I' , and 5, is a unit
vector field tangent to I'. The loop I' has time span T and spatial size R.
We will be interested in loops such that T > R so that the sources are
turned on adiabatically in the remote past and switched off also adiabatically
in the remote future. By current conservation the loop must be oriented.
Thus, at a fixed time xgy the loop looks like a pair of static sources with
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charges e at £ R/2. In other words, we are looking of the effects of a particle-
antiparticle pair which is created at rest in the remote past, the members
of the pair are slowly separated (to avoid bremsstrahlung radiation) and
live happily apart from each other, at a prudent distance R, for a long time
T, and finally, are adiabatically annihilated in the remote future. Thus,
we are in the quasi-static regime described above and Z[J]/Z[0] should
tell us what is the effective interaction between this pair of sources (or
“electrodes”).

What are the possible behaviors of the Wilson loop operator in general,
that is for any gauge theory? The answer to this depends on the nature
of the vacuum state. In later chapters we will see that a given theory may
have different vacua or phases (as in thermodynamic phases), and that the
behavior of the physical observables is different in different vacua (or phases).
Here we will do an explicit computation for the case of the simple Maxwell
U(1) gauge theory. However the behavior that will find only holds for a free
field and it is not generic.

What are the possible behaviors, then? A loop is an extended object. In
contrast to a local operator, the Wilson loop expectation value is charac-
terized by its geometric properties: its area, perimeter, aspect ratio, and so
on. We will show later on that these geometric properties of the loop to
characterize the behavior of the Wilson loop operator. Here are the generic
cases (Wilson, 1974; Kogut and Susskind, 1975a):

1. Area Law: Let A = RT be the minimal area of a surface bounded by the
loop. One possible behavior of the Wilson loop operator is the area law

Wy ~ e R (9.139)

We will show later on that this is the fastest possible decay of the Wilson

loop operator as a function of size. If the area law is obeyed the effective

potential for R large, but still small compared to the time span T, behaves
as

-1
‘/int(R) = ,111_1)1(}0 T In WF =oR (9140)

Hence, in this case the energy to separate a pair of sources grows linearly
with distance, and the sources are confined. We will say that in this case
the the theory is in the confined phase. The quantity o is known as the
string tension.

2. Perimeter Law: Another possible decay behavior, weaker than the area
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law, is a perimeter law
W ~ e_p(R +T) +0 (e_R/€> (9.141)

where p is a constant with units of energy, and £ is a length scale. This
decay law implies that in this case

Vit ~ p + const. g (9.142)

Thus, in this case the energy to separate two sources to infinite distance is
finite. This is a deconfined phase. However since it is massive, with a mass
scale m ~ & _1, there are no long range gauge bosons. We will later see that
this phase can also be regarded as a Higgs phase. Since the gauge bosons
are massive, this phase bears a close analogy with a superconductor.
3. Scale Invariant: Yet another possibility is that the Wilson loop behavior
is determined by the aspect ratio R/T or T'/R, e.g.
77
—al=+=
Wp~e I R (9.143)
where « is a dimensionless constant. This behavior leads to an interaction
o

Vit ~ =1 (9.144)

which coincides with the Coulomb law in four dimensions. We will see
that this is a deconfined phase with massless gauge bosons (photons).

We will now compute the expectation value of the Wilson loop operator
in the Maxwell U(1) gauge theory. We will return to the general problem
when we discuss the strong coupling behavior of gauge theories. We begin
by using the analytic continuation of Eq. (9.117) to imaginary time,

1y (4
2171 = N Det[9*] " e 2 Jd "’“"Jd y Ju(@) (A (2) A (y)) T (y)

2
T G o du, (4,(2)4, )

=N Det [9” (9.145)

where (A, (2)A,(y)) is the Euclidean propagator of the gauge fields in the
family of gauges labelled by a. Here we have also analytically continued the
temporal component of the gauge field Ay — iAp so that the inner products,
such as A,4" — —AZ (where now p = 1,..., D), behave as they should in
D-dimensional Euclidean space-time.
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In the Feynman gauge o = 1 the propagator is given by the expression

D
(Au(2)A,(y)) = 0, (;l )pD L et (2 = yp) (9.146)

where p = 1,...,D. After doing the integral we find that the Euclidean
propagator (the correlation function) in the Feynman gauge is

(31

(A A,00) = by (9.147)

. . . . —~(D-2
Notice that the propagator has a short-distance singularity ~ R ( ),

where R is a length scale. This singularity can be easily understood from
dimensional analysis. Indeed, since the Lagrangian density must have units
of inverse space-time volume, [£L] = L™P | it follows that the gauge field has
units of [A4,] = L_(D_Z)/Q, just as in the case of the scalar field. Thus, the
circulation of the gauge field has units of P9/ 2, and the electric charge
has units of [e] = L7972 We will see below that this scaling is consistent.

In order to carry out this calculation we will make the assumption that
the time span T of the Wilson loop is much larger than it spatial extent R, as
shown in Fig.9.2. We will further assume that the loop is everywhere smooth
and that both at long times in the past and in the future the loop was turned
on and off arbitrarily slowly (adiabatically). These assumptions are needed
in order to avoid singularities that have the physical interpretation of the
production of a large amount of soft photons in the form of Bremsstrahlung
radiation, as we noted above. Within these assumptions, the contributions to
the expectation value of the Wilson loop operator from the top and bottom
of the loop of Fig.9.2 can be neglected. Therefore, E[J] — Ej is equal to

{3

ELT] = Fo —jlgr;o 2T¢ é dx - dy D/2 |2 |D—2
-y

D

o2 +T/2 +T/2 Mz !

=2 X self — energy — ﬁ 2 J_T/2 dxp J—T/Z dyD 47TD/2 |$ _ le—2
(9.148)
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where |z —y|* = (zp — yp)® + R®. The integral in Eq. (9.148) is equal to

D
+T/2 +T/2 r 9 1
J deJ

~T/2 -T/2 o 4P |z — Z/|D_2 i
+T/2 +(T/2-s)/R dt 1 F(%)
) J—T/Q @ J—(T/2+s)/R (£ + )PP RP X T4or
LT e g r(%)
_1y7 (%) « (%) (9.149)
where
I'(v) = JOOO dt et (9.150)

is the Euler Gamma function. In Eq. (9.149) we already took the limit
T/R — oo. Putting it all together we find that the interaction energy of a
pair of static sources of charges te separated a distance R in D dimensional
space-time is given by

r(%) ¢
- 2x(0-0/2(p —3) RP-3

This is the Coulomb potential in D space-time dimensions. It is straightfor-

Vine(R) = (9.151)

ward to see that this result is consistent (as it should) with our dimensional
analysis. In the particular case of D = 4 dimensions we find

2
Vint (R) = = (Z—W) }% (9.152)

where the (dimensionless) quantity o = e /47 is the fine structure constant.
Notice that in D = 4 space-time dimensions the charge e is dimensionless.
This fact plays a key role in the perturbative analysis of quantum electrody-
namics. On the other hand, in D = 1+ 1 dimensions this result implies that
the Coulomb interaction is a linear function of the separation R between
the sources, i.e. the charged sources are confined.

Therefore we find that, even at the quantum level, the effective interac-
tion between a pair of static sources is the Coulomb interaction. This is
true because the Maxwell theory is a free field theory. It is also true in
Quantum Electrodynamics (QED), the quantum field theory of electrons
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and photons, at distances R much greater than the Compton wavelength of
the electron. However it is not true at short distances where the effective
charge is screened by fluctuations of the Dirac field, and the potential be-
comes exponentially suppressed. In contrast, in Quantum Chromodynamics
(QCD) the situation is quite different: even in the absence of a matter field,
for R large compared with a scale £ determined by the dynamics of Yang-
Mills theory, the effective potential V(R) grows linearly with R. This long
distance behavior is known as confinement. The existence of the not trivial
scale &, known as the confinement scale, cannot be obtained in perturba-
tion theory. Conversely, the potential is Coulomb-like at short distances, a
behavior known as asymptotic freedom.

9.8 Path integral quantization of non-abelian gauge theories

In this section we will discuss the general properties of the path-integral
quantization of non-abelian gauge theories. Most of what we did for the
abelian case, carries over to non-abelian gauge theories where, as we will
see, it plays a much more central role. However, here we will not deal with
the non-linearities which, ultimately, require the use of the ideas of the
Renormalization Group, and a non-perturbative treatment. We will do this
in chapter 15. A more detailed presentation can be found in the classic
books by Itzykson and Zuber (Itzykson and Zuber, 1980), and by Peskin
and Schroeder (Peskin and Schroeder, 1995).

The path integral Z[J] for a non-abelian gauge field A, with gauge con-
dition(s) g“[A] is

Z07] = fDA;j ¢STATT 5001 A7) App[ A] (9.153)

where A, = AZ)\G is in the algebra of a simply connected compact Lie group
G, whose generators are the Hermitian matrices A\“. We will use the family
of covariant gauge conditions

g'[A] = 8“142(3:) +c"(x)=0 (9.154)

and where App[A] is the Faddeev-Popov determinant. Notice that we im-
pose one gauge condition for each direction in the algebra of the gauge group
G. We will proceed as we did in the abelian case and consider an average over
gauges. In other words we will work in the manifestly covariant Feynman-‘t
Hooft gauges. Notice that in the partition function of Eq. (9.153) we have
dropped the overall divergent factor U(G)V or, rather, that we defined the
integration measure DA, so that this factor is explicitly cancelled.
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Let us work out the structure of the Faddeev-Popov determinant for a
general gauge fixing condition g“[ A]. Let U be an infinitesimal gauge trans-
formation,

U=1+ie"(x)\" +... (9.155)
Under a gauge transformation, the vector field A, transforms as
A =UAU T +i(0,U)U " = A, + A, (9.156)
For an infinitesimal transformation, the change of A, is
A, = ie" [A, A, ] = 9,2\ + O(e%) (9.157)

where \* are the generators of the algebra of the gauge group G.
In components, we can also write

oA =2ie” tr (A°[A, 4, ]) = 2 0,¢” tr (A°A") + O()
=ie’tr ()\C [)\b, )\d]) AZ - 8ueb5bc + 0(62)
=-2 fbde tr (A°X%) Az - 8ueb Ope + 0(62)

=— " AL - 9, G + O(E) (9.158)

where fabc are the structure constants of the Lie group G.
Therefore, we find

6 A, (x) _
8¢’ (y)

where we have denoted by D,[A] the covariant derivative in the adjoint

—[0u0e + £ AR ]0(x —y) = DAL (z —y)  (9.159)

representation, which in components is given by
DAY = 64 8, — ™ A, (9.160)

Using these results we can put the Faddeev-Popov determinant (or Jaco-
bian) in the form

@ §A°
99 “) (9.161)

o9
AFP[A] = Det (E) = Det(aAzg

where we used that
og" _ 9g" 04,

seb 04y, g

(9.162)
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We will now define an operator Mg p whose matrix elements are

g 0A;

(.l Mpply,b) =(2 0l 7= 15.0)
_( 99" () 34,(2)
- DA(2) bel(y)

__ [ 99x)

. 0A3(2)

DY5(z - y) (9.163)

For the case of g“[A] = 0" Aj,(x) — ¢*(c), appropriate for the Feynman-‘t
Hooft gauges, we have

99" (x)
DA e 0"0(z = 2) (9.164)

and also

(.l Meplyb) = = | 8,040 = 2)DLAIAC: - 1)

- j 5ucd(x — 2) 9 DL — )

~@"DP5(x - y) (9.165)

Thus, the Faddeev-Popov determinant now is
App = Det (8"D,[A]) (9.166)

Notice that in the non-abelian case this determinant is an explicit function
of the gauge field A,,.

Since App[A] is a determinant, it can be written as a path integral over
a set of fermionic fields, denoted by 71,(z) and 7,(z) (known as ghosts), one
per gauge condition (i.e. one per generator):

i [ " 7u(x) 8" DPLA] my()
(9.167)

Det [8”Du:| = JDnaDﬁa e
Notice that these “ghost” fields are not spinors, and hence are quantized
with the “wrong” statistics. In other words, these “particles” do not satisfy
the general conditions for causality and unitarity to be obeyed. Hence, ghosts
cannot create physical states (thereby their ghostly character).

The full form of the path integral of a Yang-Mills gauge theory with
coupling constant g, in the Feynman-‘t Hooft covariant gauges with gauge
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parameter A, is given by

{ J de EYM[A7 m, 77]

Z = JDADnDﬁ e (9.168)

where Ly is the effective Lagrangian density (defined in section 3.7.2)

1 v A
LyulA,n, 7] = ks (Fu F™) + 27 (0,4")° =77 0,D"[Aln (9.169)
Thus the pure gauge theory, even in the absence of matter fields, is non-
linear. We will return to this problem later on when we look at both the

perturbative and non-perturbative aspects of Yang-Mills gauge theories.

9.9 BRST invariance

In the previous section we developed in detail the path-integral quantization
of non-abelian Yang-Mills gauge theories. We payed close attention to the
role of gauge invariance and how to consistently fix the gauge in order to
define the path-integral. Here we will show that the effective Lagrangian of
a Yang-Mills gauge field, Eq. (9.169), has an extended symmetry, closely
related to supersymmetry. This extended symmetry plays a crucial role in
proving the renormalizability of non-abelian gauge theories.

Let us consider the QCD Lagrangian in the Feynman-‘t Hooft covariant
gauges (with gauge parameter A and coupling constant g). The Lagrangian
density L of this theory is

ab b

1
—~B.B, + B,0" A, - 7"0"D;’n” (9.170)

L= (ib—m)o— gFFL o
Here v is a Dirac Fermi field that represents quarks and transforms un-
der the fundamental representation of the gauge group G. The “Hubbard-
Stratonovich” field B, is an auxiliary field which has no dynamics of its own,
and transforms as a vector in the adjoint representation of G.

Becchi, Rouet, and Stora (Becchi et al., 1974, 1976) and Tyutin (Tyutin,
2008) realized that this gauge-fixed Lagrangian has the following (“BRST”)
symmetry, where € is an infinitesimal anti-commuting parameter:

5AZ = eDanb ( )
5 = igen“t*ep (9.172)
a 1 aoc
on" = =5 gef " nme (9-173)
6n" = eB" ( )
6B =0 ( )
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Eq. (9.171) and Eq. (9.172) are local gauge transformations, and as such,
leave invariant the first two terms of the effective Lagrangian L of Eq.
(9.170). The third term of Eq. (9.170) is trivial. The invariance of the fourth
and fifth terms holds because the change of A in the fourth term cancels
against the change of 7 in the fifth term. Finally, it remains to see that the
changes of the fields A, and 7 in the fifth term of Eq. (9.170) cancel out. To
see that this is the case, we check that

ab b

abe b abc b ¢
5(DM77)=DM(577 +gf oA

1
- _ §‘(}26‘]00,bcfcde (Azndne + Ainenb + Aznbnd) (9176)
which vanishes due to the Jacobi identity for the structure constants
fadef
or, equivalently, from the nested commutators of the generators t":
(e, [ ] ] + [, [ 1] + [ [ 2 ]] = 0 (9.178)
Hence, BRST is at least a global symmetry of the gauge-fixed action with
gauge fixing parameter \.

bed + fbdefcad + fcdefabd =0 (9177)

This symmetry has a remarkable property which follows from its fermionic
nature. Let ¢ be any of the fields of the Lagrangian and Q¢ be the BRST
transformation of the field,

3o =€eQo (9.179)
For instance,
Q A% = DIy (9.180)
and so on. It follows that for any field ¢
Q=0 (9.181)
i.e. the BRST transformation of Q¢ vanishes. This rule works for the field

A, due to the transformation property of 5(Dzbnb). It also holds for the

ghosts since
1
Q277a _ ngfabcfbdencndne =0 (9182)
which holds due to the Jacobi identity.
What are the implications of the existence of BRST as a continuous sym-
metry? To begin with, it implies that there is a conserved self-adjoint charge

(2 that must necessarily commute with the Hamiltonian H of the Yang-Mills
gauge theory. Above we saw how @) acts on the fields, Q2¢ = 0, for all the
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fields in the Lagrangian. Hence, as an operator Q2 = 0, that is, the BRST
charge @ is nilpotent, and it commutes with H.

Let us now show that @) divides the Hilbert space of the eigenstates of H
into three sectors

1. For Q2 = 0 to hold, many eigenstates of H must be annihilated by Q.
Let H; be the set of eigenstates of H which are not annihilated by Q.
Hence, if |11) € Hq, then Q1) # 0. Thus, the states in H; are not
BRST invariant.

2. Let us consider the subspace of states Hsy of the form |i¢o) = Q|1), i.e.
Ho = QHy. Then, for these states Qi) = Q?|1b1) = 0. Hence, the states
in H9 are BRST invariant but are the BRST transform of states in H;.

3. Finally, let Hy be the set of eigenstates of H that are annihilated by @,
Q|vo) = 0, but which are not in Ha, i.e. |tg) # Q|11). Hence, the states
in Hg are BRST invariant, and are not the BRST transform of any other
state. This is the physical space of states.

It follows from the above classification that any pair of states in Ha, |12)
and |t)5), has a zero inner product:

(halipn) = (1|Qls) = 0 (9.183)

where we used that |15) is the BRST transform of a state in Hq, |¢7).
Similarly, one can show that if |1g) € Hg, then (o|1hg) = 0.

What is the physical meaning of BRST and of this classification? Peskin
and Schroeder give a simple argument (Peskin and Schroeder, 1995). Con-
sider the weak coupling limit of the theory, ¢ — 0. In this limit we can
find out what BRST does by looking at the transformation properties of
the fields that appear in the Lagrangian of Eq. (9.170). In particular, @
transforms a forward polarized (i.e. longitudinal) component of A, into a
ghost. At g = 0, we see that n = 0 and that the anti-ghost 7 transforms
into the auxiliary field B. Also, at the classical level, B = A" A,,. Hence,
the auxiliary fields B are backward (longitudinally) polarized quanta of A,,.
Thus, forward polarized gauge bosons and anti-ghosts are in Hy, since they
are not the BRST transform of states created by other fields. Ghosts and
backward polarized gauge bosons are in Hs since they are the BRST trans-
form of the former. Finally, transverse gauge bosons are in Hy. Hence, in
general, states with ghosts, anti-ghosts, and gauge bosons with unphysical
polarization belong to either H; or Hsy. Only the physical states belong to
Ho- It turns out that the S-matrix, when restricted to the physical space
Hog, is unitary (as it should).
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Finally, we note that BRST symmetry appears in all theories with con-
straints (Henneaux and Teitelboim, 1992). For example, it plays a key role in
the study of critical dynamics in the path integral approach to the Langevin
equation description of systems out of equilibrium, and in the statistical me-
chanics of disordered systems (Martin et al., 1973; Parisi, 1988; Hertz et al.,
2016).



