
1 Finite temperature propagator: Erratum

The propagator for a scalar field at finite temperature T and in imaginary time
is
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where β = 1/T and ωn = 2πTn. We then write the propagator as
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We can now use the identity
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which can be derived using a contour integral with the auxiliary function

F (z) =
πeiπz

sin(πz)
(4)

which has simple poles at z = n ∈ Z with unit residue. For z ∈ R, the sum is
an even function of z with period 2π. Hence, it is defined outside the interval
[0, 2π) by its periodic extension.

Using the identity, the imaginary time propagator becomes
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which can be brought to the form
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where we recognize that the first term of the r.h.s. is the imaginary time prop-
agator at T = 0 and that
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is the Bose-Einstein distribution for a bosons with energy
√

p2 +m2.
The (time-ordered) propagator in real time x0 at finite temperature T is the

obtained by the analytic continuation τ → ix0 and it is given by
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