Solution of Homework 2

TA: Ze-Min Huang

Contents

I. Renormalization group for the Ashkin-Teller Model 1
 1. Qualitative discussion 1
 2. One-dimensional Ashkin-Teller model 2
 3. Midgal-Kadnoff Approximation 5

II. Momentum-Shell RG for the Non-Linear σ-Model 6
 1. Dimensionless coupling constants and external sources 6
 2. Expansion around background fields 7
 3. Equation of motion for A_{μ}^{ij} and B_{μ}^{i} 7
 4. Momentum-Shell Renormalization 8
 5. Fixed points 9
 6. Correlation length and critical exponents 10
 7. $M \sim (\tilde{u} - \tilde{u}_{*})^{\beta}$ and $M \sim |h|^{1/\delta}$ 11
 8. $D = 2$ 12

A. Derivation of Eq. (21) 12

B. Feynman diagrams and momentum-shell integration 13

I. RENORMALIZATION GROUP FOR THE ASHKIN-TELLER MODEL

In this problem, we shall study the Ashkin-Teller model, i.e.,

\[H = -K_{2} \sum_{\langle \vec{r}, \vec{r}^\prime \rangle} [\sigma (\vec{r}) \sigma (\vec{r}^\prime) + \tau (\vec{r}) \tau (\vec{r}^\prime)] - K_{4} \sum_{\langle \vec{r}, \vec{r}^\prime \rangle} \sigma (\vec{r}) \sigma (\vec{r}^\prime) \tau (\vec{r}) \tau (\vec{r}^\prime), \]

where σ and τ are the Ising degrees of freedom with values ± 1. Both K_{2} and K_{4} are positive.

1. Qualitative discussion

$K_{2} \to \infty$: In this limit, the first term dominates. Both $\sigma (\vec{r})$ and $\tau (\vec{r})$ must be homogeneous so as to minimize the ground state energy, i.e.,

- $\sigma = +1$, $\tau = +1$;
- $\sigma = +1$, $\tau = -1$;
- $\sigma = -1$, $\tau = +1$;
- $\sigma = -1$, $\tau = -1$.

$K_{4} \to \infty$: In this limit, there is $\sigma (\vec{r}) \sigma (\vec{r}^\prime) = \tau (\vec{r}) \tau (\vec{r}^\prime)$ so as to minimize the energy. That is, the K_{4} term acts essentially as a Dirac-Delta function and the Hamiltonian becomes

\[H = -2K_{2} \sum_{\langle \vec{r}, \vec{r}^\prime \rangle} \sigma (\vec{r}) \sigma (\vec{r}^\prime), \]

which is equivalent to a single Ising model with $K = 2K_{2}$.
Figure 1: The RG flow with x-axis for K_2 and y-axis for K_4.

$K_2 \to 0$: If $K_2 \to 0$, then the Hamiltonian becomes

$$H \to -K_4 \sum_{\langle \vec{r}, \vec{r}' \rangle} \equiv \Sigma (\vec{r}) [\sigma (\vec{r}) \tau (\vec{r}') \Sigma (\vec{r}') \sigma (\vec{r}') \tau (\vec{r})],$$

and the partition function can be written as

$$Z = \sum_{\{\sigma=\pm 1, \tau=\pm 1\}} \exp \left[+K_4 \sum_{\langle \vec{r}, \vec{r}' \rangle} \Sigma (\vec{r}) \Sigma (\vec{r}') \right]$$

$$= 2^N \sum_{\{\gamma=\pm 1\}} \exp \left[+K_4 \sum_{\langle \vec{r}, \vec{r}' \rangle} \Sigma (\vec{r}) \Sigma (\vec{r}') \right],$$

where N is the site number and the effective coupling constant is $K_{\text{eff}} = K_4$.

2. One-dimensional Ashkin-Teller model

Decimation: Now we define the even lattice of σ and τ as

$$\mu (r) \equiv \sigma (2r),$$

and

$$\gamma (r) \equiv \tau (2r).$$

Similar to the lecture note, we sum over the both σ and τ at site $(2r+1)$, i.e.,
\begin{align*}
A & \equiv \sum_{\sigma(2r+1)} \sum_{\tau(2r+1)} e^{\{K_2 \sigma(2r+1) \mu(r)+\mu(r+1)+K_2 \tau(2r+1) \gamma(r)+\gamma(r+1)\}} \\
& \times e^{\{K_4\sigma(2r+1)\mu(r)\tau(2r+1)\gamma(r)+\sigma(2r+1)\mu(r+1)\tau(2r+1)\gamma(r+1)\}} \\
& = e^{K_2[\mu(r)+\mu(r+1)]} + K_2[\gamma(r)+\gamma(r+1)] \cdot e^{K_4[\mu(r)\gamma(r)+\mu(r+1)\gamma(r+1)]} \\
& \quad + e^{-K_2[\mu(r)+\mu(r+1)]} - K_2[\gamma(r)+\gamma(r+1)] \cdot e^{-K_4[\mu(r)\gamma(r)+\mu(r+1)\gamma(r+1)]} \\
& \quad + e^{-K_2[\mu(r)+\mu(r+1)]} + K_2[\gamma(r)+\gamma(r+1)] \cdot e^{-K_4[\mu(r)\gamma(r)+\mu(r+1)\gamma(r+1)]} \\
& = 2e^{K_4[\mu(r)\gamma(r)+\mu(r+1)\gamma(r+1)]} \cosh \{K_2 [\mu (r) + \mu (r + 1)] + K_2 [\gamma (r) + \gamma (r + 1)]\} \\
& \quad + 2e^{-K_4[\mu(r)\gamma(r)+\mu(r+1)\gamma(r+1)]} \cosh \{K_2 [\mu (r) + \mu (r + 1)] - K_2 [\gamma (r) + \gamma (r + 1)]\}. \tag{1}
\end{align*}

Note that A is invariant under the following three sets of transformations

\begin{align*}
\mu (r) & \rightarrow -\mu (r), \quad \mu (r + 1) \rightarrow -\mu (r + 1) \\
\tau (r) & \rightarrow -\tau (r), \quad \tau (r + 1) \rightarrow -\tau (r + 1)
\end{align*}

and

\begin{align*}
\sigma & \leftrightarrow \tau,
\end{align*}

respectively. That is, the number of independent values in A is 3, i.e.,

1. $\mu (r) = \mu (r + 1) = 1, \gamma (r) = \gamma (r + 1) = 1$;
2. $\mu (r) = \mu (r + 1) = 1, \gamma (r) = -\gamma (r + 1) = 1$;
3. $\mu (r) = -\mu (r + 1) = 1, \gamma (r) = -\gamma (r + 1) = 1$.

The values of A for other μ and γ can be determined by performing the symmetry transformations given above. Because A is positively defined, we can recast A as

\begin{align*}
A & = e^{J_0 + J_1 \mu(r)\mu(r+1) + J_2 \gamma(r)\gamma(r+1) + J_3 \mu(r)\gamma(r+1)\gamma(r+1)}, \tag{2}
\end{align*}

where $J_1 = J_2 \equiv J$ due to the symmetry between $\mu (r)$ and $\gamma (r)$ in A. Now let us fix coefficients J_0, J_1, J_2 and J_3 by inserting the values of μ and γ back to Eq. (2), i.e.,

\begin{align*}
e^{J_0+2J_3} & = 2e^{2K_4} \cosh (4K_2) + 2e^{-2K_4} \tag{3} \\
e^{J_0-J_3} & = 4 \cosh (2K_2) \tag{4} \\
e^{J_0-2J_3} & = 4 \cosh (2K_4), \tag{5}
\end{align*}

whose solutions are

\begin{align*}
J_0 & = \frac{1}{4} \left\{ 2 \ln [4 \cosh (2K_2)] + \ln [2e^{-2K_4} + 2e^{2K_4} \cosh (4K_2)] + \ln [4 \cosh (2K_4)] \right\} \tag{6} \\
J & = \frac{1}{4} \left\{ \ln [2e^{-2K_4} + 2e^{2K_4} \cosh (4K_2)] - \ln [4 \cosh (2K_4)] \right\} \tag{7} \\
J_3 & = \frac{1}{4} \left\{ -2 \ln [4 \cosh (2K_2)] + \ln [2e^{-2K_4} + 2e^{2K_4} \cosh (4K_2)] + \ln [4 \cosh (2K_4)] \right\}. \tag{8}
\end{align*}

That is, we have obtained

\begin{align*}
K_2' & = \frac{1}{4} \left\{ \ln [2e^{-2K_4} + 2e^{2K_4} \cosh (4K_2)] - \ln [4 \cosh (2K_4)] \right\} \\
& = \frac{1}{4} \ln \left[\frac{e^{-2K_4} + e^{2K_4} \cosh (4K_2)}{2 \cosh (2K_4)} \right], \tag{9}
\end{align*}

whence
whose RG flow is shown in Fig. 1.

and the effective Hamiltonian is

\[H = -\frac{N}{2} J_0 - K_2' \sum_{(r, r')} |\sigma(r) \sigma(r') + \tau(r) \tau(r')| - K_4' \sum_{(r, r')} \sigma(r) \sigma(r') \tau(r) \tau(r'). \]

β functions for \(K_2 \) and \(K_4 \): The corresponding β-functions are given as

\[
\beta_{K_2} = \frac{K_2' - K_2}{\ln 2} = \frac{1}{4} \ln \left[e^{-2K_4 + e^{2K_4} \cosh(4K_2)} \right] - K_2 = \frac{1}{4} \ln \left[\frac{e^{-2K_4 + e^{2K_4} \cosh(4K_2)}}{2 \cosh^2(2K_2)} \right] - K_2.
\]

\[
\beta_{K_4} = \frac{K_4' - K_4}{\ln 2} = \frac{1}{4} \ln \left[e^{-2K_4 + e^{2K_4} \cosh(4K_2)} \right] - K_4 = \frac{1}{4} \ln \left[\frac{e^{-2K_4 + e^{2K_4} \cosh(4K_2)}}{2 \cosh^2(2K_2)} \right] - K_4,
\]

whose RG flow is shown in Fig. 1.

Fixed points: Fig. 1 suggests that there are four fixed points located at \((K_{2*}, K_{4*}) = (0, 0), (0, \infty), (\infty, 0), \) and \((\infty, \infty)\), respectively.

The linearized β-functions around the fixed point \(K_{2*} = K_{4*} = 0 \) are given as

\[
\beta_{K_2} = -\frac{1}{\ln 2} K_2,
\]

and

\[
\beta_{K_4} = -\frac{1}{\ln 2} K_4,
\]

which means that the eigenvalues are \(- (\ln 2)^{-1}\) and \(- (\ln 2)^{-1}\).

As for \(K_{2*} = K_{4*} = \infty \), we can define \(T_2 = \frac{1}{K_{2*}} \) and \(T_4 = \frac{1}{K_{4*}} \), and then linearized the β functions around \(T_{2*} = T_{4*} = 0 \). By assuming \(\frac{\delta T_2}{T_2} \ll 1, \frac{\delta T_4}{T_4} \ll 1 \), the renormalization transformation of \(K_2 \) and \(K_4 \) in Eq. (10) and (9) implies

\[
\delta T_2 = \frac{T_2^2}{4} \ln 2,
\]

and

\[
\delta T_4 = \frac{T_4^2}{4} \ln 2.
\]

The corresponding β-functions are

\[
\beta_{T_2} \equiv \frac{\delta T_2}{\ln 2} = \frac{T_2^2}{4},
\]

and

\[
\beta_{T_4} \equiv \frac{\delta T_4}{\ln 2} = \frac{T_4^2}{4}.
\]

That is, the eigenvalues of the renormalization group transformation around this fixed point is zero.

Similarly, for \(K_{2*} = 0, K_{4*} = \infty \) \((K_{2*} = \infty, K_{4*} = 0)\), the eigenvalues are \(- \frac{1}{\ln 2}\) and \(0 (0 \text{ and } -\frac{1}{\ln 2})\), respectively.

Similarity and difference compared to the Ising model: Similar to the Ising model, the stable fixed point is at \(K_2 = 0 \) and the perturbative fixed point \((K_2 \rightarrow \infty)\) is unstable. Compared to the Ising case, there is one more coupling constant, \(K_4 \), whose stable fixed-point value is \(K_4 = 0 \), but not the perturbative fixed point \(K_4 = \infty \) (zero-temperature limit).
Table I: Fixed points, eigenvalues and critical exponents. Note that $T_2 \equiv K_2^{-1}, T_4 \equiv K_4^{-1}$.

<table>
<thead>
<tr>
<th>Fixed Points</th>
<th>Stable?</th>
<th>Eigenvalues</th>
<th>Critical Exponents</th>
</tr>
</thead>
<tbody>
<tr>
<td>$K_2 = K_4 = 0$</td>
<td>Yes</td>
<td>$(-\frac{1}{16}, -\frac{1}{16})$ for (K_2, K_4)</td>
<td>$(-\ln 2, -\ln 2)$</td>
</tr>
<tr>
<td>$K_2 = K_4 = \frac{1}{2}$</td>
<td>No</td>
<td>(ϵ, ϵ) for (T_2, T_4)</td>
<td>$(\frac{1}{2}, \frac{1}{2})$</td>
</tr>
<tr>
<td>$K_2 = 0, K_4 = \frac{1}{2}$</td>
<td>No</td>
<td>$(-\frac{1}{16}, \epsilon)$ for (K_2, T_4)</td>
<td>$(-\ln 2, \frac{1}{2})$</td>
</tr>
<tr>
<td>$K_2 = \frac{1}{2}, K_4 = 0$</td>
<td>No</td>
<td>$(\epsilon, -\frac{1}{16})$ for (T_2, K_4)</td>
<td>$(\frac{1}{2}, -\ln 2)$</td>
</tr>
<tr>
<td>$K_2 = 0, K_4 = \infty$</td>
<td>Yes</td>
<td>$(-\frac{1}{16}, -\epsilon)$ for (K_2, T_4)</td>
<td>$(-\ln 2, -\frac{1}{2})$</td>
</tr>
<tr>
<td>$K_2 = \infty, K_4 = 0$</td>
<td>Yes</td>
<td>$(-\epsilon, -\frac{1}{16})$ for (T_2, K_4)</td>
<td>$(-\frac{1}{2}, -\ln 2)$</td>
</tr>
<tr>
<td>$K_2 = \frac{1}{2}, K_4 = \infty$</td>
<td>No</td>
<td>$(\epsilon, -\epsilon)$ for (T_2, T_4)</td>
<td>$(\frac{1}{2}, -\frac{1}{2})$</td>
</tr>
<tr>
<td>$K_2 = \infty, K_4 = \infty$</td>
<td>Yes</td>
<td>$(-\epsilon, -\epsilon)$ for (T_2, T_4)</td>
<td>$(\frac{1}{2}, -\frac{1}{2})$</td>
</tr>
</tbody>
</table>

3. Migdal-Kadanoff Approximation

Renormalized coupling constants: By using the Migdal-Kadanoff approximation, we can derive the renormalization group equations in higher dimension, for example, D. Assuming we are around the ordered phase, the decimation process can be approximated by moving the bonds to the left-over bonds. Consequently, in D-dimensions, there are

\[
K_2' = \frac{1}{4} \ln \left[\frac{e^{-2^{D-1}K_4} + e^{2^{D-1}K_4} \cosh (2^{D-1}4K_2)}{2 \cosh (2^{D-1}2K_4)} \right],
\]

and

\[
K_4' = \frac{1}{4} \ln \left[\frac{\cosh (2^{D-1}2K_4) \left[e^{-2^{D-1}2K_4} + e^{2^{D-1}2K_4} \cosh (2^{D-1}4K_2) \right]}{2 \cosh^2 (2^{D-1}2K_4)} \right]
\]

whose RG-flow in the case $\epsilon = 0.1$ is shown in Fig. 2.

Fixed points: Fig. 2 suggests that there are eight-fixed points. The calculations is similar to that presented in last part, so we summarized our result in Table. I.
Phase diagrams and order parameter: The phase diagram and corresponding order parameters are shown in Fig. 2. As for the order parameters, let us fix them by considering some limits. In the limit that $K_2 = 0$, the Ashkin-Teller model is equivalent to one single model with effective coupling $K_{\text{eff}} = K_4$ and effective spin $\sigma(r)\tau(r)$, so the order parameter for phase 1 is $\langle \sigma \tau \rangle \neq 0$, but for phase 3 $\langle \sigma \tau \rangle = 0$. In the limit $K_4 = \infty$, the model is equivalent to one single Ising model with effective coupling $K_{\text{eff}} = 2K_2$ and spin σ or τ. So the order parameter for phase 2 is $\langle \sigma \rangle \neq 0$, $\langle \tau \rangle \neq 0$ and thus $\langle \sigma \tau \rangle \neq 0$, but for phase 1, $\langle \sigma \rangle = \langle \tau \rangle = 0$. In the limit $K_4 = 0$, this model is equivalent to two independent Ising model, so the order parameters for phase 3 are $\langle \sigma \rangle = \langle \tau \rangle = 0$.

II. MOMENTUM-SHELL RG FOR THE NON-LINEAR σ-MODEL

In this problem, we shall study the $O(N)$ non-linear sigma model in the Euclidean spacetime with dimension $D = 2 + \epsilon$,

$$\mathcal{L} = \frac{1}{2g} (\partial_\mu \vec{n}) (\partial^\mu \vec{n}) + \frac{1}{2g} \vec{H} \cdot \vec{n},$$

(18)

where $\vec{n} = (n^1, \ldots, n^a, \ldots n^N)$ with $a = 1, \ldots, N$ and $|\vec{n}|^2 = 1$. That is, the target manifold is a $(N-1)$-sphere, S^{N-1}.

Assuming the classical solution of the field equation is n^a_0, then it satisfies

$$n^a_0 n^a_0 = 1.$$

In the R^N, we can further choose a set of frame fields e^a_i perpendicular to n^a_0, i.e.,

$$e^a_i n^a_0 = 0, \quad e^a_i e^a_j = \delta_{ij}.$$

Now we can recast n^a as

$$n^a = \sqrt{1 - |\phi|^2 n^a_0} + \sum_{i=1}^{N-1} \phi_i e^a_i.$$

Clearly, $\partial_\mu n^a_0$ must be perpendicular to n^a_0, so we can define

$$\partial_\mu n^a_0 = B^i_\mu e^a_i,$$

and similarly,

$$\partial_\mu e^a_i = A^a_{ij} e^a_j + \tilde{B}^i_\mu n^a_0,$$

where $e^a_i n^a_0 = 0$ implies $A^a_{ij} = -e^a_i \partial_\mu e^a_j$ and $B^i_\mu = -\tilde{B}^i_\mu = e^a_i \partial_\mu n^a_0$.

1. Dimensionless coupling constants and external sources

By dimensional analysis, there are

$$[g] = E^{-\epsilon},$$

and

$$[H] = E^2,$$

where E stands for the energy. We can define the dimensionless coupling constant u and external sources \tilde{h} as

$$g = \Lambda^{-\epsilon} u,$$

(19)

and

$$\tilde{H} = \Lambda^2 \tilde{h}.$$
2. Expansion around background fields

Because the classical solution is \(n_0^a \), the magnitude of \(\phi_i \) is assumed small. We can perform expansion of \(\phi \) up to the order \(\mathcal{O}(\phi^2) \) and the action becomes

\[
S = \int \left\{ \frac{1}{2g} \left[\left((D_\mu \phi_i + B_\mu^i) \right)^2 + \left(\phi_i \phi_j - |\phi|^2 \delta_{ij} \right) B_\mu^i B_\mu^j \right] + \frac{1}{2g} \left[\left(1 - \frac{1}{2} |\phi|^2 \right) H^a n_0^a + e_i^a \phi_i H^a \right] \right\},
\]

(21)

where

\[
D_\mu \phi_i \equiv \left(\partial_\mu \phi_i - A_{ij}^\mu \phi_j \right).
\]

The detailed derivations is given in Append. A. \(A_{ij}^\mu \) looks like the spin connection, so let us export the local symmetry of the action above.

Due to the following definitions

\[
A_{ij}^\mu = -e_i^a \partial_\mu e_j^a,
\]

and

\[
n^a = \sqrt{1 - \sum_i (\phi_i)^2 n_0^a + \phi_i e_i^a},
\]

under the local rotation,

\[
\phi_i \to R_{ij}(x) \phi_j,
\]

and

\[
e_i^a \to e_j^a R_{ji},
\]

the action in Eq. (18) is invariant. In addition, the transformation law of \(A_{ij}^\mu \) is

\[
A_{ij}^\mu \to (R^{-1} A_{ij}^\mu R)^{ij} - (R^{-1} \partial_\mu R)^{ij},
\]

which is similar to that for the spin connection under the local Lorentz transformation (or rotation in the Euclidean spacetime). Because \(\phi^i \) can be regarded as the tangent vector in the target manifold \(S^{N-1} \) defined in the local chart around \(n_0^a \), \(A_{ij}^\mu \) is the connection for the “vector field” \(\phi^i \).

3. Equation of motion for \(A_{ij}^\mu \) and \(B_\mu^i \)

From Eq. (21), we can derive the equation of motion for \(\phi_i \), i.e.,

\[
-\frac{1}{2g} 2D^\mu \left(D_\mu \phi_i + B_\mu^i \right) + 2 \frac{1}{2g} \left(\phi_j B_{\mu}^i B_{\mu}^j - \phi_i \delta_{mn} B_{\mu}^m B_{\mu}^n \right) + \frac{1}{2g} \left(-\phi^i n_0^a + e_i^a \right) H^a = 0.
\]

Because \(\phi_i = 0 \) is the solution of the equation of motion, there is

\[
D^\mu B_\mu^i = -\frac{1}{2} e_i^a H^a = 0,
\]

(22)

which reduces to

\[
D^\mu B_\mu^i = 0
\]

in the absence of external sources.

Because \(B_{ij}^\mu \) is a classical field, the equation of motion in Eq. (22) can be applied to the action. In other words, the action must depend on \(\phi^i \) quadratically, i.e.,

\[
S = \int \left\{ \frac{1}{2g} \left[\left((D_\mu \phi_i) \right)^2 + B_{\mu}^i B_{\mu}^i + \left(\phi_i \phi_j - |\phi|^2 \delta_{ij} \right) B_{\mu}^i B_{\mu}^j \right] + \frac{1}{2g} \left(1 - \frac{1}{2} |\phi|^2 \right) H^a n_0^a \right\}.
\]

(23)
Notice that Eq. (23) depends on ϕ^i quadratically, so we can integrate out ϕ^i to obtain the effective action, i.e.,

$$Z = \int D\phi^i \exp (-S)$$

$$= e^{-S_0} \det \left\{ \frac{1}{2g} \left[-\delta_{ij} D^\mu D_\mu + B_\mu^m B_\mu^m (\delta_{im} \delta_{jn} - \delta_{ij} \delta_{mn}) - \frac{1}{2} \delta_{ij} H^a n_0^a \right] \right\}^{-1/2}$$

$$= \exp \left\{ -S_0 - \frac{1}{2} \text{Tr} \ln \frac{1}{2g} \left[-\delta_{ij} D^\mu D_\mu + B_\mu^m B_\mu^m (\delta_{im} \delta_{jn} - \delta_{ij} \delta_{mn}) - \frac{1}{2} \delta_{ij} H^a n_0^a \right] \right\},$$

where S in the first line is given as

$$S = S_0 + S',$$

$$S_0 = \int \frac{1}{2g} B_\mu^i B_\mu^i + \int \frac{1}{2g} H^a n_0^a,$$

and

$$S' = \int \frac{1}{2g} \left[(D_\mu \phi^i)^2 + (\phi_i \phi_j - |\phi|^2 \delta_{ij}) B_\mu^i B_\mu^j \right] - \frac{1}{2} |\phi|^2 H^a n_0^a$$

$$= \int \frac{1}{2g} \phi^i \left[-\delta_{ij} D^\mu D_\mu + B_\mu^m B_\mu^m (\delta_{im} \delta_{jn} - \delta_{ij} \delta_{mn}) - \frac{1}{2} \delta_{ij} H^a n_0^a \right] \phi^j.$$

The effective action is

$$S_{\text{eff}} = S_0 + \frac{1}{2} \text{Tr} \ln \frac{1}{2g} \left[-\delta_{ij} D^\mu D_\mu + B_\mu^m B_\mu^m (\delta_{im} \delta_{jn} - \delta_{ij} \delta_{mn}) - \frac{1}{2} \delta_{ij} H^a n_0^a \right].$$

By performing expansion of S_{eff} for fields B_μ^i and H^a, we can obtain the quantum corrections to S_0. For example, the corrections to the B^i term is

$$-\frac{1}{2} \int d^D x \int \frac{d^D p}{(2\pi)^D} \frac{\delta_{ij}}{p^2} B_\mu^m B_\mu^m (\delta_{im} \delta_{jn} - \delta_{ij} \delta_{mn})$$

$$= -\frac{1}{2} (-1) \int d^D x (N - 2) B_\mu^i B_\mu^i \left[\int_{b\Lambda} \frac{d^D p}{(2\pi)^D} \frac{1}{p^2} \right]$$

$$= \frac{1}{2} \int d^D x (N - 2) B_\mu^i B_\mu^i \frac{S_D \Lambda^{D-2}}{(2\pi)^D - \delta l}, \quad (24)$$

and the corrections to the $H^a n_0^a$ term is

$$-\frac{1}{2} \int d^D x \int \frac{d^D p}{(2\pi)^D} \frac{\delta_{ij}}{p^2} \left(-\frac{1}{2} \delta_{ij} H^a n_0^a \right)$$

$$= \frac{1}{4} \int d^D x H^a n_0^a (N - 1) \int_{b\Lambda} \frac{d^D p}{(2\pi)^D} \frac{1}{p^2}$$

$$= \frac{1}{4} \int d^D x H^a n_0^a (N - 1) \frac{S_D \Lambda^{D-2}}{(2\pi)^D - \delta l}, \quad (25)$$

where

$$\int_{b\Lambda} \frac{d^D p}{(2\pi)^D} \frac{1}{p^2} = \frac{S_D}{(2\pi)^D} \int_{\Lambda} dpp^{D-3}$$

$$= \frac{S_D}{(2\pi)^D} \frac{1}{D - 2} (1 - b^{D-2}) \Lambda^{D-2}$$

$$\simeq \frac{S_D}{(2\pi)^D} \frac{1}{b^{D-2}} \Lambda^{D-2}.$$
\(N = 4, \ \epsilon = -1 \)

\(N = 4, \ \epsilon = 0 \)

\(N = 4, \ \epsilon = 1 \)

Figure 3: Renormalization group flow

Alternatively, one can calculate these quantum corrections by using the Feynman diagrams, which are given in App. B. Finally, the effective action becomes

\[
S_{\text{eff}} = \int \frac{1}{2g} \left[1 - g(N - 2) \frac{S_D \Lambda^{D-2}}{(2\pi)^D} \delta l \right] B^i \partial B^i + \int \frac{1}{2g} h^a n_0 \left[1 - g \frac{2}{N - 1} \frac{S_D \Lambda^{D-2}}{(2\pi)^D} \delta l \right] + \ldots
\]

\[
\simeq \int \frac{\Lambda^\epsilon}{2u} \left[1 + u(N - 2) \frac{S_D}{(2\pi)^D} \delta l \right] B^i \partial B^i + \int \frac{\Lambda^\epsilon}{2u} h^a n_0 \left[1 + u(N - 2) \frac{S_D}{(2\pi)^D} \delta l - \frac{u}{2} (N - 1) \frac{S_D}{(2\pi)^D} \delta l \right] + \ldots
\]

Combined with rescaling, one can obtain the following \(\beta \) functions,

\[
\beta_{\tilde{u}} \equiv \frac{\delta \tilde{u}}{\delta l} = -\epsilon \tilde{u} + (N - 2) \tilde{u}^2, \quad (26)
\]

and

\[
\beta_{\hat{h}^a} \equiv \frac{\delta \hat{h}^a}{\delta l} = 2 \hat{h}^a + \frac{N - 3}{2} \hat{h}^a \hat{\tilde{u}}, \quad (27)
\]

where

\[
\tilde{u} = u \frac{S_D}{(2\pi)^D}, \text{ and, } \hat{h}^a = h^a \frac{S_D}{(2\pi)^D}.
\]

The corresponding renormalization flow of the parameters \(\tilde{u} \) and \(\hat{h}^a \) is shown in Fig. 3.

5. Fixed points

For later convenience, we shall assume \(N \geq 3 \). The fixed points of the \(\beta \) functions can be obtained by requiring \(\beta_{\tilde{u}} = \beta_{\hat{h}^a} = 0 \), which locate at

\[
\tilde{u}_* = 0, \ \hat{h}^a = 0,
\]
or
\[\tilde{u}_* = \frac{\epsilon}{N-2}, \quad \tilde{h}^a_* = 0. \]

In the Euclidean spacetime, the action is required to be positive-definite, so for \(\epsilon < 0 \), the fixed point located at \(\tilde{u}_* < 0 \) is not physical.

Now let us calculate the eigenvalues around these fixed points. For \(\tilde{u}_* = \tilde{h}^a_* = 0 \), the \(\beta \) functions can be approximated by

\[\beta^{(1)}_u \simeq -\epsilon \tilde{u}, \quad \beta^{(1)}_{\tilde{h}^a} \simeq 2\tilde{h}^a, \]

which means for \(\epsilon > 0 \), \(\tilde{u} \) is irrelevant, while \(\tilde{h}^a \) is always relevant. For \(\tilde{u}_* = \frac{\epsilon}{N-2} \) and \(\tilde{h}^a_* = 0 \), the \(\beta \) functions are

\[\beta^{(2)}_u \simeq \epsilon \tilde{u}, \quad \text{and} \quad \beta^{(2)}_{\tilde{h}^a} = \left(2 + \frac{\epsilon}{2} \frac{N-3}{N-2}\right)\tilde{h}^a, \]

which means that \(\tilde{h}^a \) is relevant and for \(\epsilon > 0 \), \(\tilde{u} \) is relevant as well.

For \(D = 2 \), or \(\epsilon = 0 \), at the tree-level, \(g \) has zero dimension, so it is marginal. However, in the presence of quantum fluctuations, \(g \) becomes marginally relevant.

6. Correlation length and critical exponents

By dimensional analysis, the correlation length \(\xi \) can be written as

\[\xi = \Lambda^{-1} f (\tilde{u}). \]

By requiring \(\xi \) independent of the energy scale, there is

\[0 = \Lambda \frac{d}{d\Lambda} \xi, \]
\[1 = -\beta_u \frac{d}{d\tilde{u}} \ln f (\tilde{u}) \]
\[1 = -\beta'_u (\tilde{u} - \tilde{u}_*) \frac{d}{d\tilde{u}} \ln f (\tilde{u}), \]

where around the fixed points \(\tilde{u} = \tilde{u}_* \), there is

\[\beta_u = \beta'_u (\tilde{u} - \tilde{u}_*). \]

Hence, \(f (\tilde{u}) \) is given as

\[f (\tilde{u}) = f (\tilde{u}_0) \left(\frac{\tilde{u} - \tilde{u}_*}{\tilde{u}_0 - \tilde{u}_*} \right)^{-\beta'_u - 1}, \]

or

\[\xi \sim (\tilde{u} - \tilde{u}_*)^{-\frac{1}{\beta'_u}}. \]

The critical exponent is

\[\nu = \frac{1}{\beta'_u} = \begin{cases} -\frac{1}{\epsilon} & \tilde{u}_* = 0 \\ \frac{1}{\epsilon} & \tilde{u}_* = \frac{\epsilon}{N-2}. \end{cases} \]
7. $M \sim (\tilde{u} - \tilde{u}_*)^\beta$ and $M \sim |h|^{1/\delta}$

$M \sim (\tilde{u} - \tilde{u}_*)^\beta$: First of all, we shall determine the scaling dimension of M in presence of quantum fluctuations. This can be done by calculating the field strength renormalization. By definition, there is

$$n^a = \sqrt{1 - \sum_i (\phi_i)^2 n_0^a + \phi_i \epsilon_i^a}$$

$$\approx \left[1 - \frac{1}{2} \sum_i (\phi_i)^2 \right] n_0^a + \phi_i \epsilon_i^a.$$

So after integrating over the momentum shell, the new field $(n_0^a)'$ is

$$(n_0^a)' = \left[1 - \frac{1}{2} (N-1) \int_{\Lambda} d^D p \frac{g}{(2\pi)^D p^2} \right] n_0^a$$

$$= \left[1 - \frac{1}{2} (N-1) \tilde{u} \delta l \right] n_0^a$$

$$= Z^{1/2} n_0^a,$$

where

$$Z^{1/2} = 1 - \frac{1}{2} (N-1) \tilde{u} \delta l$$

is the field strength renormalization. That is, the scaling dimension of n_0^a is $[n_0^a] = \Lambda^{\frac{1}{2} (N-1)^a}$, while the engineering scaling dimension is 0. Alternatively, we can define

$$\gamma_n = \frac{\delta Z}{\delta \tilde{l}} = -(N-1) \tilde{u}.$$

Now we are ready to derive the critical exponent β. By dimensional analysis, there is

$$M = \Lambda^{-\frac{1}{2} \gamma_n} g (\tilde{u}),$$

which should be independent of the energy scale, i.e.,

$$\frac{d}{d\Lambda} M = 0$$

$$-\frac{1}{2} \gamma_n g (\tilde{u}) - \beta'_n (\tilde{u} - \tilde{u}_*) \frac{d}{d\tilde{u}} g (\tilde{u}) = 0$$

$$g (\tilde{u}) \sim (\tilde{u} - \tilde{u}_*)^{-\frac{\gamma_n}{2}}.$$

or

$$M \sim (\tilde{u} - \tilde{u}_*)^{-\frac{\gamma_n}{2}}.$$

The value of β is thus given as

$$\beta = \begin{cases} 0 & \tilde{u}_* = 0 \\ \frac{(N-1)}{2(N-2)} & \tilde{u}_* = \frac{\epsilon}{N-2} \end{cases}.$$

$M \sim |h|^{1/\delta}$: Similarly, by dimensional analysis, there is

$$M = \Lambda^{-\frac{1}{2} \gamma_n} g (|h|),$$

which implies

$$M \sim |h|^{-\frac{\gamma_n}{2}}.$$

That is, we have obtained

$$\frac{1}{\delta} = \begin{cases} 0 & \tilde{u}_* = 0 \\ \frac{\epsilon(N-1)}{4(N-2)} & \tilde{u}_* = \frac{\epsilon}{N-2} \end{cases}.$$
8. $D = 2$

$\tilde{u}(\Lambda)$: The β function for \tilde{u} implies

$$\int_{\tilde{u}(\mu)}^{\tilde{u}(\Lambda)} \tilde{u}^{-1} = (N - 2) \int_{\mu}^{\Lambda} d\ln \Lambda$$

$$\tilde{u}(\Lambda) = \frac{\tilde{u}(\mu)}{1 + \tilde{u}(\mu) (N - 2) \ln \frac{\Lambda}{\mu}}.$$

Note that at the scale $\Lambda_{LP} = \mu \exp \left[\frac{-1}{N - 2}\ln(\mu)\right]$, $\tilde{u}(\Lambda)$ becomes divergent. This scale is known as the Landau pole.

$\Lambda \gg \mu$: For $\Lambda \gg \mu$, there is

$$\tilde{u}(\Lambda) \rightarrow 1$$

so the interaction becomes weak.

Correlation length again: Similar to Sec. II 6, $\frac{d}{d\Lambda} \xi = 0$ implies

$$\frac{\xi[\tilde{u}(\Lambda)]}{\xi[\tilde{u}(\mu)]} = \exp \left[- \int_{\tilde{u}(\mu)}^{\tilde{u}(\Lambda)} \frac{1}{\beta_a} d\tilde{u} \right].$$

$$= \exp \left\{ \frac{1}{N - 2} \left[\frac{1}{\tilde{u}(\Lambda)} - \frac{1}{\tilde{u}(\mu)} \right] \right\}.$$

Hence, for $\Lambda \rightarrow \infty$, there are $\tilde{u}(\Lambda) \rightarrow 0$ and thus $\xi[\tilde{u}(\Lambda)] \rightarrow \infty$. By contrast for $\Lambda \rightarrow \Lambda_{LP}$, the correlation length $\xi[\tilde{u}(\Lambda)]$ becomes finite.

Appendix A: Derivation of Eq. (21)

In this section, we shall provided the detailed derivations of Eq. (21).

Because of the following decomposition,

$$n^a = \sqrt{1 - \phi_i \cdot \phi_i n_0^a} + \sum_{i=1}^{N-1} \phi_i e_i^a,$$

there are

$$\partial_{\mu} n^a$$

$$= \frac{1}{2} \frac{1}{\sqrt{1 - |\phi|^2}} \left(-2\phi_i \partial_{\mu} \phi_i n_0^a + \sqrt{1 - |\phi|^2} \partial_{\mu} n_0^a + \partial_{\mu} \phi_i e_i^a + \phi_i \partial_{\mu} e_i^a \right)$$

$$\simeq -\phi_i \partial_{\mu} \phi_i n_0^a + \sqrt{1 - |\phi|^2} \partial_{\mu} n_0^a + \partial_{\mu} \phi_i e_i^a + \phi_i \partial_{\mu} e_i^a$$

and
\[\partial_\mu n^\alpha \partial^\mu n^\alpha\]

\[= (-\phi_1 \partial_\mu \phi_i n_0^a) (\partial_\mu n_0^a) + \left(1 - |\phi|^2\right) \partial_\mu n_0^a \partial_\mu n_0^a + \partial_\mu n_0^a \left(-\phi_1 \partial_\mu \phi_i n_0^a + \partial_\mu \phi_j e_j^a + \phi_j \partial_\mu e_j^a \right) + \partial_\mu \phi_i e_i^a \left(\sqrt{1 - |\phi|^2} \partial_\mu n_0^a + \partial_\mu \phi_j e_j^a + \phi_j \partial_\mu e_j^a \right) + \phi_i \partial_\mu e_i^a \left(\partial_\mu n_0^a + \partial_\mu \phi_j e_j^a + \phi_j \partial_\mu e_j^a \right)\]

\[= \left(1 - |\phi|^2\right) \partial_\mu n_0^a \partial_\mu n_0^a + \partial_\mu \phi_i e_i^a \left(\partial_\mu n_0^a + \partial_\mu \phi_j e_j^a + \phi_j \partial_\mu e_j^a \right) + \phi_i \partial_\mu e_i^a \left(\partial_\mu n_0^a + \partial_\mu \phi_j e_j^a + \phi_j \partial_\mu e_j^a \right)\]

\[= \left(1 - |\phi|^2\right) B_\mu^a B_\mu^a + \partial_\mu \phi_i e_i^a \left(\partial_\mu n_0^a + \partial_\mu \phi_j e_j^a + \phi_j \partial_\mu e_j^a \right) + \phi_i \partial_\mu e_i^a \left(\partial_\mu n_0^a + \partial_\mu \phi_j e_j^a + \phi_j \partial_\mu e_j^a \right)\]

where

\[\partial_\mu e_i^a \partial_\mu n_0^a = (A_\mu^a e_0^a - B_\mu^a n_0^a) B_\mu^a e_i^a = A_\mu^a B_\mu^a,\]

and

\[\partial_\mu e_j^a \partial_\mu e_i^a = (A_\mu^a e_0^a - B_\mu^a n_0^a) (A_\mu^a e_0^a - B_\mu^a n_0^a) = A_\mu^a A_\mu^a + B_\mu^a B_\mu^a.\]

Notice that

\[\vec{h} \cdot \vec{n} \simeq \left(1 - \frac{1}{2} |\phi|^2\right) h^a n_0^a + e_i^a \phi_i h^a,\]

the action up to order \(O(\phi^2)\) can be written as

\[S = \int \left\{ \frac{\Lambda^4}{2u} \left(|(D_\mu \phi_i + B_\mu^a)|^2 + (\phi_i \phi_j - |\phi|^2 \delta_{ij}) B_\mu^a B_\mu^a \right) + \Lambda^2 \left[\left(1 - \frac{1}{2} |\phi|^2\right) h^a n_0^a + e_i^a \phi_i h^a \right] \right\},\]

where

\[D_\mu \phi_i \equiv (\partial_\mu \phi_i + A_\mu^{ij} \phi_j).\]

Appendix B: Feynman diagrams and momentum-shell integration

In this section, we shall derive the coefficient of \(B_\mu^a B_\mu^a\) and \(n_0^a h^a\) by using the Feynman diagrams.

Both the Feynman rules and Feynman diagrams are shown in Fig. 4. The loop diagrams shown in Fig. 4 can be calculated as follow.
\begin{align*}
- \frac{1}{2g} \delta_{\mu\nu} \left[\frac{1}{2} \left(\delta_{im}\delta_{jn} + \delta_{in}\delta_{jm} \right) - \delta_{ij}\delta_{mn} \right] & \int_{\Lambda \to \Lambda} \frac{d^D p}{(2\pi)^D} \frac{g\delta_{mn}}{p^2} \\
& = - \frac{1}{2g} \delta_{\mu\nu} \left[\delta_{ij} - \delta_{ij} (N - 1) \right] \int_{\Lambda \to \Lambda} \frac{d^D p}{(2\pi)^D} \frac{1}{p^2} \\
& = \frac{1}{2} \delta_{\mu\nu}\delta_{ij} (N - 2) \int_{\Lambda \to \Lambda} \frac{d^D p}{(2\pi)^D} \frac{1}{p^2},
\end{align*}

and

\begin{align*}
& \frac{1}{2} \delta_{mn} \int \frac{d^D p}{(2\pi)^D} \frac{g\delta_{mn}}{p^2} \\
& = \frac{1}{2} g (N - 1) \int \frac{d^D p}{(2\pi)^D} \frac{1}{p^2},
\end{align*}

which match the result shown in Sec. II 4.