Torus

It is more convenient to use the Landau (axial) gauge: \(A_1 = -B x_2 \), \(A_2 = 0 \),

\(\tau = x_1 + i x_2 \)

Lowest Landau level w.f.c.:

\(\Psi(x_1, x_2) = f(z) e^{-\frac{z^2}{2L_2^2}} \)

Generalized PBC's:

\[
\begin{align*}
 f(z + l_1) &= e^{i \Theta_1} f(z) \\
 f(z + il_2) &= e^{i \Theta_2 - i \pi N \phi \left(\frac{2z}{L_2} + \frac{1}{2} \right)} f(z)
\end{align*}
\]

\(\tau = \frac{i L_2}{l_1} \) is the modular parameter of the torus

\[-\frac{1}{2}(l_1 + il_2) \quad \frac{1}{2}(l_1 + il_2) \quad \frac{1}{2}(l_1 - il_2) \]

\(\frac{1}{2}(l_1 - il_2) \)

\(f(z) \) has zeros inside the rectangle

\[
\oint dz \frac{f'(z)}{f(z)} = N \phi \Rightarrow \text{total phase change around } \gamma \text{ is } 2\pi N \phi \]
If $f(z)$ is analytic inside γ and satisfies BOF's, it must have $N\phi$ zeros

$$f(z) = e^{\frac{2\pi i}{L_1} \phi} \prod_{j=1}^{N\phi} \Theta_j \left(\frac{z - e^{2\pi i j}}{L_1} \right)$$

where $\Theta_j(u|\omega)$ is the first odd elliptic theta function

$$\Theta_j(u|\omega) = i \sum_{n=-\infty}^{\infty} (-1)^n e^{i \pi (n^2 - n \frac{1}{2} \omega + \omega (2n-1) u)}$$

$k \in \mathbb{R}$, $0 \leq |k| \leq \pi \sqrt{\frac{N\phi}{L_1} \frac{L_2}{L_1}}$

$\Rightarrow f(z)$ are parametrized by k and by the zeros z_j:

$$e^{T_1} = e^{kL_1} (-1)^{N\phi}$$

$$e^{T_2} = e^{-kL_2 + \pi i \frac{Z_0}{L_1}}$$

$$k = \frac{\Theta_1 + \pi N\phi}{L_1}, \quad Z_0 = \Theta_2 \frac{L_1}{\pi} - ik \frac{L_1 L_2}{\pi}$$

The locations of the zeros $f(z)$ are determined
s.t. \(f(z) \) form a complete set of orthogonal wave functions that are eigenstates of the angular momenta translations.

E.g. choose \(\varepsilon_{j+1} = \varepsilon_j + \frac{\hbar}{N} \) \(\Rightarrow \) the dimension of the Hilbert space is \(N^2 \).

N-particle wavefunction:

\[
\Phi_{\text{CM}}(z_1, \ldots, z_N) = \Phi_{\text{CM}}(z) \prod_{1 \leq i < k \leq N} f(z_k - z_i) \times e^{-\sum_{j=1}^{N} \frac{(x_j^2)}{2\hbar^2}}
\]

Center of mass.

\[
z = \sum_{j=1}^{N} \varepsilon_j
\]

Only the \(\Phi_{\text{CM}} \) is sensitive to the translation.

\[
f(z_{j+1}) = f(z)
f(z_{j+\frac{1}{2}}) = f(z) e^{i\frac{\pi}{L} \left(\frac{z_{j+1} - z_j}{\hbar} \right)}
\]

\[
\Phi_{\text{CM}}(z_{j+1}) = e^{i\theta_1} (-1)^{N-1} \Phi_{\text{CM}}(z)
\]

\[
\Phi_{\text{CM}}(z_{j+\frac{1}{2}}) = e^{i\theta_2} (-1)^{N-1} e^{i\frac{\pi}{L} \left(\frac{z_{j+1} - z_j}{\hbar} \right)} \Phi_{\text{CM}}(z)
\]

\[
f(z_j - z_k) = f_\nu \left(\frac{z_j - z_k}{\hbar} \right)
\]
\[\Psi_{\text{CM}}(z) = e^{\frac{i}{\hbar} 2 \gamma_1 \frac{(z - z_0)}{L_1}} \]

\[\begin{align*}
\text{s.t.} & \quad e^{\frac{i}{\hbar} \beta_1} = (-1)^N e^{i\theta_1} \\
& \quad e^{2\pi \frac{z_0}{L_1}} = (-1)^N e^{i\theta_2 + \beta_2} \\
\text{unique solution:} & \quad k = \frac{\pi N + \theta_1}{L_1} \\
& \quad \beta_0 = L_1 \left(\frac{\theta_2 + \frac{N}{2}}{2\pi} \right) - i h \gamma \left(\frac{N}{2} + \frac{\theta_1}{2\pi} \right) \\
\end{align*} \]

\(\Rightarrow \) The wave function of a filled LL on the torus is unique.

Note that \(\theta_1 \) and \(\theta_2 \) affect only the CM factor.

Hall conductance

\[\langle \sigma_{xy} \rangle = \frac{e^2}{i \hbar} \int \frac{d\theta_j}{2\pi} \langle \Psi_N | \frac{\partial}{\partial \theta_j} | \Psi_P \rangle \]

\[= \frac{e^2}{i \hbar} \int \frac{d\theta_j}{2\pi} \int_0^{L_1} dx_2 \int_0^{L_2} \frac{dx_1}{2\pi} \text{ln} \left(\frac{\gamma}{\text{cm}}(z, \theta) \right) \]

\(\Rightarrow \) if \(\Psi_{\text{cm}}(z, \theta) \) is an entire function with only one zero
\[\oint d\theta \ln \frac{\Theta_{CM}(z, \theta)}{\theta} = 2\pi \alpha \]

\[\Rightarrow \langle \sigma_{xy} \rangle = \frac{e^2}{h} \times 1 \]

Clem number

Quantized Hall conductance of the Hofstadter bands

Let's return to the problem of the states of charged particles on a square lattice in a magnetic field \(B \) with flux \(\Theta = 2\pi n/g \) on each plaquette. We want to first find the eigenspectra of these particles, which form bands, and then to determine the Hall conductance of each filled band. There are \(g \) bands and each band has \(L/2/g \) states (integer!).

This task can be done numerically (or by approx. methods). However, the computation of \(\sigma_{xy} \) is simplified since it is (as we will see) related to a topological invariant.
\(\Rightarrow \) we can compute the states in some limited but \(\mathbb{R}^2 \) will be exact.

The analysis here is simpler than in the continuum. The main effect of \(B \) is to generate a subsidiary structure (i.e., the magnetic unit cells) \(\Rightarrow \) we can use PBC's.

This is true since \(B \) enters through \(e^{iA_\psi(r)} \), which is invariant under \(2\pi L_k(r) \).

The eigenvectors are

The Hofstadter states are eigenvectors of \(\hat{T}_1 \) and \(\hat{T}_2 \) (discrete magnetic translation) \(\Rightarrow \) in units of the magnetic unit cell \(H \) is periodic. \(\Rightarrow \) it is consistent to apply PBC's in real space.

However, the W.F.'s are not globally well defined in the momentum space torus, \(\mathbb{R}^2 \), the magnetic \(B \) is

\[-\pi < k_1 < \pi , \quad -\pi/2 < k_2 < \pi/2\]

We will follow the work of TKNN (Thouless, Kohmoto, den Nijs, Nightingale, PRL 1982) and of

The current operator for the lattice model

\[\hat{J}_k \left(\hat{A} \right) = \frac{\delta H}{\delta A_k \left(\hat{A} \right)} \]

\(H \) is arbitrary (generally interacting). We will assume that \(A_k \left(\hat{x} \right) \) enters only through the KE term.

\[H_{KE} = \int \frac{d^3k}{(2\pi)^3} \frac{c^+ (\hat{k}) h_{KE} (\hat{k}, \hat{k}') c(\hat{k}')} {\sqrt{\eta_{\text{GB}}}} \]

\[\text{hermitian.} \]

\(\text{MBZ: magnetic Brillouin Zone.} \)

In the presence of an electric field \(\hat{E} \), \(\hat{A} \) is shifted by \(\hat{E} t \)

\[h_{KE} (\hat{k}, \hat{k}'; \hat{E}) = h_{KE} \left(\frac{\hat{k} + e \hat{E} t}{\hbar c}, \frac{\hat{k}' + e \hat{E} t}{\hbar c} \right) \]

\(\hat{E} \) is equivalent to a shift of the momentum of each particle by \(\frac{e}{\hbar c} \hat{E} t \) (this is also the same as a twist \(\hat{\theta} = \frac{e}{\hbar c} \hat{E} t \)).

The Kubo formula for the Hall conductivity can be written as

\[(\tau_{xy})_k = -i \hbar \frac{1}{2} \frac{\delta}{\delta A_k} \frac{\delta}{\delta A_y} \]
For a non-interacting system this expression is a sum over occupied states \(|n\rangle \) with \(E_n < E_F \)

\[
\hat{Q}_{xy}(\alpha) = \frac{e^2}{h} \sum_{\nu \in \text{occupied}} \frac{\partial^2}{\partial \epsilon_{k_\nu} \partial \epsilon_{k_\nu}} \langle n | \hat{\sigma} | m \rangle
\]

The one-particle states \(|n\rangle \) are labelled by a band index \(r \) (\(r = 1, \ldots, B - 1 \)) and by \(\vec{k} \in \text{the unit MBZ} \).

\(\Psi_r(\vec{k}) \) are eigenstates / \(\Psi_{r+1}(\vec{k}) = \Psi_r(\vec{k}) \)

Let us define a formal perturbation in powers of a parameter \(\lambda \) (eq. 1)

\[
\text{Hopping Eqs.}
\]

\[
\text{hopping}
\]

\[
\lambda \hat{T} \left[e^{i \vec{k}_1 \cdot \vec{r}_{k+1}} \Psi_{r+1}(\vec{k}_1, \vec{k}) + e^{-i \vec{k}_1 \cdot \vec{r}_{k-1}} \Psi_{r-1}(\vec{k}_1, \vec{k}) \right]
\]

\[
- \lambda \hat{T} \cos(\vec{k}_2 + 2\pi \vec{r}_r) \Psi_r(\vec{k}_1, \vec{k}_2) = E(\vec{k}_1, \vec{k}_2) \Psi_r(\vec{k}_1, \vec{k}_2)
\]

\(\Rightarrow \) \(F + \hat{G} \) linearly independent solutions \(\{ \Psi_r(\vec{k}) \} \)

(\(F = 1, \ldots, B \)) and each solution has e.v. \(E_j(\vec{k}) \)

(Landau-Hofstadter bands)
Suppose that E_p there are exactly p filled Landau-Hofstadter bands. This is the state $|0\rangle$

due the Hall conductance C_{xy} is a sum over the contributions of the filled bands,

$$
C_{xy} = \frac{e^2}{\hbar} \sum_{n=1}^{\infty} \frac{1}{2\pi} \int \frac{dk_1}{2\pi} \int \frac{dk_2}{2\pi} \sum_{p=1}^{\infty} E_j \partial_j \psi_p^*_n (k) \partial_j \psi_p^*_n (k)
$$

define the Berry connection for each band

\begin{align*}
A_j^B (k) &= \sum_{p=1}^{\infty} \frac{1}{2\pi} \int \frac{dk_1}{2\pi} \int \frac{dk_2}{2\pi} \sum_{p=1}^{\infty} E_j \partial_j \psi_p^*_n (k) \partial_j \psi_p^*_n (k)
\end{align*}

Berry curvature

$$
E_j \partial_j A_{\theta n}^B (k) = \sum_{p=1}^{\infty} E_j \partial_j \psi_p^*_n (k) \partial_j \psi_p^*_n (k)
$$

$$
C_{xy} = \frac{e^2}{\hbar} \int \frac{d^2k}{(2\pi)^2} \ E_j \partial_j A_{\theta n}^B (k)
$$

which is the Chern number (the winding number of the wave function as he traces over the MBZ)

Chern number of the
The Chern number of the n-th occupied band: I_n

$$I_n = \frac{1}{\pi} \int \frac{dk_1}{2\pi} \int \frac{dk_2}{2\pi} \sum_{\mathbf{k}} \frac{\varepsilon_{\mathbf{k}}}{\varepsilon_{\mathbf{k}+\mathbf{q}}^2} \delta_{\mathbf{p}, \mathbf{k}^0} \partial_{\varepsilon_{\mathbf{k}}^0} \frac{\partial \varepsilon_{\mathbf{k}}^0}{\partial k_1} \partial_{\varepsilon_{\mathbf{k}+\mathbf{q}}^0} \frac{\partial \varepsilon_{\mathbf{k}+\mathbf{q}}^0}{\partial k_2}$$

is a topological invariant of the n-th band.

$\Rightarrow I_n \neq 0 \Leftrightarrow$ the states are not globally well defined over the MBZ.

How to compute the Chern numbers

Consider the Landau-Harper eqn in the limit $\lambda \to \infty$ (quasi 1D limit). We will not here do an expansion in powers of λ (to the lowest $\neq 0$ order).

At $\lambda = 0$, $E^{(0)}_p(k^0) = \delta_{p,n}$

with $E^{(0)}_n(k^0) = 2t \cos(k_x + 2\pi \frac{n}{\xi})$

which are generally non-degenerate.

There are band crossings at $(k_x, 0)$ and $(k_x, \frac{\pi}{\xi})$

e.g. the $n=1$ and $n=2$ bands cross at $k_x = \frac{\pi}{\xi}$,

the $n=2$ band crosses the $n=3$ band at $(k_x, 0)$, etc.

\Rightarrow for n even, the nth and the $n-1$th band cross at