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1 Renormalization Group for the Ashkin-Teller
Model

The Ashkin-Teller Model is a simple generalization of the Ising Model in which
there are two Ising degrees of freedom, o and 7, each taking values 41, defined
on the sites of a lattice. Here we will consider a D-dimensional hypercubic lattice
whose sites are labelled by the two-component lattice vectors . The interactions
are restricted to nearest neighboring sites and the classical Hamiltonian H is

H=-Kz Y (o(r)o(r’)+7(r)r(r") =Ky Y o(r)o(r)r(r)r(r’) (1)
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where (r,r ') denotes nearest neighboring sites; K2 > 0 and K4 > 0 are two cou-
pling constants. Clearly for K4 = 0 this system is equivalent to two decoupled
Ising models.

1. Show that the following statements are true:

(a) If K5 — oo, the system is in its ground state, and find the possible
ground state(s).

(b) If K4 — oo the system is equivalent to a single Ising model with
coupling constant K = 2K,

(¢) If K3 — 0 the system is also equivalent to a single Ising model with
coupling constant Keg. Find Keg.

2. Consider now the Ashkin-Teller model on a one-dimensional lattice. Use
a decimation method (analogous to what was done in class for the one-
dimensional Ising model) to derive an exact renormalization group trans-
formation. Find the fixed points, and calculate their eigenvalues. Draw
the RG flows explicitly. Discuss the similarities and differences with the
Ising model



3. Consider now the Ashkin-Teller model on a D-dimensional hypercubic lat-
tice. Use the Migdal-Kadanoff bond moving procedure to derive a block-
spin transformation for D = 1 4 ¢, where £ > 0 and “small”.

(a) Find all the fixed points, both stable and unstable. Calculate all the
eigenvalues of the RG transformation for each fixed point, and the
correlation length exponent v for each fixed point.

(b) Sketch the qualitative RG flows on the Ky — K4 plane. Use the flows
to derive a phase diagram. What is the order parameter(s) which
labels each phase? Justify your arguments.

Warning: The Midgal-Kadanoff bond-moving procedure yields an un-
physical phase transition at Ky — oo, with Ky < co. It is easy to see that
the associated stable fixed points are physically equivalent.

2 Momentum-Shell RG for the Non-Linear o-
Model

In this problem you will be asked to consider the O(/N) non-linear o-model, in
D = 2 + ¢ dimensions, coupled to an external field. Since we will consider this
theory in Euclidean space it is equivalent to a classical Heisenberg model.

We will parametrize the configurations by means of an N-component field
n(z), which satisfies the constraint n? = 1. The Euclidean Lagrangian (or
classical Hamiltonian) is £
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The partition function Z is

£ = 5 (0um(@)? + 5-H(@) - n(a) ®)
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We are going to follow the procedure to decompose the field n(x) into its slow
and fast components. Let ng(x) be an N-component slowly varying configura-
tion of the o-model which is also a solution of the classical equations of motion
(i.e., it extremizes the Euclidean action). Also, let ¢;(x) (i = 1,...,N —1.)
be an (essentially unrestricted) N — l-component field which we will use to
parametrize the fluctuations of the field as follows. Let {e;(x)} be a set of
N — 1 unit-length vectors defined at each point in space. They are required to
form, together with ng(x), an orthonormal basis for the local configurations,
i.e.,

ng(@)ei(x) =0;  ef(@)ef(@) = i (4)
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fori,j=1,...,N —1and a = 1,...,n (repeated indices are summed over).
Thus, we can write

N-1
nt(z) = V1 - ¢*(x) nj(z) + Z i(x)ef () (5)

In other terms, we have defined a local frame. The local changes of the slow field
nd(z) and of the unit vectors ef (i.e., of the local frame) can also be expanded
in that basis

N-1

oun(x) = Y Bi(x)el(x) (6)
i=1
N-1 ‘

Opef(@) = Y A(z)ed(x) — Bj(x)nf(x) (7)
j=1

where

B (x) = ei(x) - Ouno(x),  Af(x) = ~Ali(2) = ~ei(x) - Ouej(x)  (8)

1. Write the coupling constant g and the magnetic field H in terms of the
dimensionless coupling constant v and dimensionless field h, by using
dimensional analysis in terms of a momentum cutoff A.

2. Write the action as a function(al) of the fluctuating field ¢(z) in the
background of the field, slow configuration ng(x), parametrized by the
fields BL(x) and Aff (). Expand the Euclidean action as a power series
expansion of the field ¢(z), and write down the explicit for of the linear
and quadratic terms in ¢;(x).

3. Show that for the configuration ng(x) to be stationary, the background
fields B},(z) and AYJ(z) must satisfy the equation of motion

Df]Bﬂ(z) = 0,65 — Ai{ (z)] Bf;(:z:) =0 9)

Hint: Demand that the action is stationary with respect to a variation of
the fluctuation field ¢;.

4. Use the momentum shell integration technique to integrate-out the fast
variables of the field ¢;(x) inside the momentum shell bA < |p| < A, with
b=1-0¢ <1 and 6¢ small. Obtain a set of differential equations which
govern the (differential) renormalization for u and h = |h|.

5. Find the fixed points and draw the qualitative flows for dimension D = 2+
€. Calculate the eigenvalues of u and h at each fixed point and determine
when are u and h relevant, irrelevant or marginal. Show that precisely at
D = 2 there is a marginal operator.



6. Use a renormalization group argument to find an analytic expression for
the singular dependence of the correlation length as a function of u for
u > u. and h = 0. Express your result in terms of the critical exponent v.

7. Use a renormalization group argument to find the behavior of the order
parameter, the spontaneous magnetization M®* = (n®(x)), as a function
of u at h = 0 and close to u.. Show that it obeys a power law of the
form M ~ (u. — u)? and compute the critical exponent 3 to lowest order
in e. Use a similar RG argument to find the field dependence of the
magnetization at u. and determine the value of the critical exponent § of

the h dependence of M as h — 0, M ~ |h|1/6
8. Consider the special (and important) case of D = 2 dimensions.

(a) Solve the RG flow equation for the dimensional coupling constant
u = u(A) as an explicit function of the cutoff A in terms of its value
at a reference scale p.

(b) Discuss the behavior of this effective (or running) coupling constant
in the ultra-violet regime A > p. Does the running coupling constant
get big or small? How fast? Why is this behavior referred to as
asymptotic freedom?

(¢) Find the behavior of the correlation length & as a function of the
dimensional coupling constant u for D = 2. Be explicit about the
assumptions you make and what is their physical justification.

NOTE: In this problem you have to do the momentum-shell integral. You may
find it useful to express your angular integrations in terms of the area of the
unit hypersphere in D dimensions
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where I'(z) is the Euler Gamma function,

F(z):/ dt t*~te™t
0

which is convergent for Re z > 0 and where I'(1) = 1.



