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1 Renormalization Group for the Ashkin-Teller
Model

The Ashkin-Teller Model is a simple generalization of the Ising Model in which
there are two Ising degrees of freedom, σ and τ , each taking values ±1, defined
on the sites of a lattice. Here we will consider aD-dimensional hypercubic lattice
whose sites are labelled by the two-component lattice vectors r. The interactions
are restricted to nearest neighboring sites and the classical Hamiltonian H is

H = −K2

∑

〈r,r ′〉

(σ(r)σ(r ′) + τ(r)τ(r ′))−K4

∑

〈r,r ′〉

σ(r)σ(r ′)τ(r)τ(r ′) (1)

where 〈r, r ′〉 denotes nearest neighboring sites; K2 > 0 and K4 > 0 are two cou-
pling constants. Clearly for K4 = 0 this system is equivalent to two decoupled
Ising models.

1. Show that the following statements are true:

(a) If K2 → ∞, the system is in its ground state, and find the possible
ground state(s).

(b) If K4 → ∞ the system is equivalent to a single Ising model with
coupling constant K = 2K2

(c) If K2 → 0 the system is also equivalent to a single Ising model with
coupling constant Keff . Find Keff .

2. Consider now the Ashkin-Teller model on a one-dimensional lattice. Use
a decimation method (analogous to what was done in class for the one-
dimensional Ising model) to derive an exact renormalization group trans-
formation. Find the fixed points, and calculate their eigenvalues. Draw
the RG flows explicitly. Discuss the similarities and differences with the
Ising model

1



3. Consider now the Ashkin-Teller model on a D-dimensional hypercubic lat-
tice. Use the Migdal-Kadanoff bond moving procedure to derive a block-
spin transformation for D = 1 + ε, where ε > 0 and “small”.

(a) Find all the fixed points, both stable and unstable. Calculate all the
eigenvalues of the RG transformation for each fixed point, and the
correlation length exponent ν for each fixed point.

(b) Sketch the qualitative RG flows on the K2−K4 plane. Use the flows
to derive a phase diagram. What is the order parameter(s) which
labels each phase? Justify your arguments.

Warning: The Midgal-Kadanoff bond-moving procedure yields an un-
physical phase transition at K2 → ∞, with K4 < ∞. It is easy to see that
the associated stable fixed points are physically equivalent.

2 Momentum-Shell RG for the Non-Linear σ-
Model

In this problem you will be asked to consider the O(N) non-linear σ-model, in
D = 2 + ε dimensions, coupled to an external field. Since we will consider this
theory in Euclidean space it is equivalent to a classical Heisenberg model.

We will parametrize the configurations by means of an N -component field
n(x), which satisfies the constraint n2 = 1. The Euclidean Lagrangian (or
classical Hamiltonian) is L

L =
1

2g
(∂µn(x))

2 +
1

2g
H(x) · n(x) (2)

The partition function Z is

Z =

∫

Dn(x)
∏

x

δ(n2(x)− 1) e
−

∫

ddx L
(3)

We are going to follow the procedure to decompose the field n(x) into its slow
and fast components. Let n0(x) be an N -component slowly varying configura-
tion of the σ-model which is also a solution of the classical equations of motion
(i.e., it extremizes the Euclidean action). Also, let φi(x) (i = 1, . . . , N − 1.)
be an (essentially unrestricted) N − 1-component field which we will use to
parametrize the fluctuations of the field as follows. Let {ei(x)} be a set of
N − 1 unit-length vectors defined at each point in space. They are required to
form, together with n0(x), an orthonormal basis for the local configurations,
i.e.,

na
0(x)e

a
i (x) = 0; eai (x)e

a
j (x) = δi,j (4)

2



for i, j = 1, . . . , N − 1 and a = 1, . . . , n (repeated indices are summed over).
Thus, we can write

na(x) =
√

1− φ2(x) na
0(x) +

N−1
∑

i=1

φi(x)e
a
i (x) (5)

In other terms, we have defined a local frame. The local changes of the slow field
na
0(x) and of the unit vectors eai (i.e., of the local frame) can also be expanded

in that basis

∂µn
a
0(x) =

N−1
∑

i=1

Bi
µ(x)e

a
i (x) (6)

∂µe
a
i (x) =

N−1
∑

j=1

Aij
µ (x)e

a
j (x)−Bi

µ(x)n
a
0(x) (7)

where

Bi
µ(x) = ei(x) · ∂µn0(x), Aij

µ (x) = −Aji
µ (x) = −ei(x) · ∂µej(x) (8)

1. Write the coupling constant g and the magnetic field H in terms of the
dimensionless coupling constant u and dimensionless field h, by using
dimensional analysis in terms of a momentum cutoff Λ.

2. Write the action as a function(al) of the fluctuating field φ(x) in the
background of the field, slow configuration n0(x), parametrized by the
fields Bi

µ(x) and Aij
µ (x). Expand the Euclidean action as a power series

expansion of the field φ(x), and write down the explicit for of the linear
and quadratic terms in φi(x).

3. Show that for the configuration n0(x) to be stationary, the background
fields Bi

µ(x) and Aij
µ (x) must satisfy the equation of motion

Dij
µ Bj

µ(x) ≡
[

∂µδij −Aij
µ (x)

]

Bj
µ(x) = 0 (9)

Hint: Demand that the action is stationary with respect to a variation of
the fluctuation field φi.

4. Use the momentum shell integration technique to integrate-out the fast
variables of the field φi(x) inside the momentum shell bΛ ≤ |p| ≤ Λ, with
b = 1 − δℓ . 1 and δℓ small. Obtain a set of differential equations which
govern the (differential) renormalization for u and h = |h|.

5. Find the fixed points and draw the qualitative flows for dimension D = 2+
ε. Calculate the eigenvalues of u and h at each fixed point and determine
when are u and h relevant, irrelevant or marginal. Show that precisely at

D = 2 there is a marginal operator.
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6. Use a renormalization group argument to find an analytic expression for
the singular dependence of the correlation length as a function of u for
u > uc and h = 0. Express your result in terms of the critical exponent ν.

7. Use a renormalization group argument to find the behavior of the order

parameter, the spontaneous magnetization Ma = 〈na(x)〉, as a function
of u at h = 0 and close to uc. Show that it obeys a power law of the
form M ∼ (uc − u)β and compute the critical exponent β to lowest order
in ε. Use a similar RG argument to find the field dependence of the
magnetization at uc and determine the value of the critical exponent δ of

the h dependence of M as h → 0, M ∼ |h|1/δ

8. Consider the special (and important) case of D = 2 dimensions.

(a) Solve the RG flow equation for the dimensional coupling constant
u = u(Λ) as an explicit function of the cutoff Λ in terms of its value
at a reference scale µ.

(b) Discuss the behavior of this effective (or running) coupling constant
in the ultra-violet regime Λ ≫ µ. Does the running coupling constant
get big or small? How fast? Why is this behavior referred to as
asymptotic freedom?

(c) Find the behavior of the correlation length ξ as a function of the
dimensional coupling constant u for D = 2. Be explicit about the
assumptions you make and what is their physical justification.

NOTE: In this problem you have to do the momentum-shell integral. You may
find it useful to express your angular integrations in terms of the area of the
unit hypersphere in D dimensions

SD =
2πD/2

Γ(D/2)

where Γ(z) is the Euler Gamma function,

Γ(z) =

∫ ∞

0

dt tz−1e−t

which is convergent for Re z > 0 and where Γ(1) = 1.
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