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1 Renormalization of an Interacting Field The-
ory of Fermions

In another problem set we discussed the chiral Gross-Neveu model, which is
a simple model of chiral symmetry breaking in particle physics, and of charge
density waves in condensed matter. For simplicity we will consider the case of
1 + 1-dimensional space-time although it is easy to work out a generalization
to higher dimensions. Most of the questions below are formulated for the the-
ory in Minkowski space-time. Naturally, you will have to rotate the theory to
Euclidean space-time to do the integrals and to derive the RG equations.

The Lagrangian density of the Chiral Gross-Neveu Model is

L = ψ̄ai/∂ψa +
g0
2N

(

(

ψ̄aψa

)2 −
(

ψ̄aγ5ψa

)2
)

(1)

where ψa is a two-component Dirac spinor

ψa(x) ≡
(

Ra

La

)

(2)

with Ra an La being the amplitudes for the (chiral) Right and Left fields re-
spectively, with a = 1, . . . , N . In this problem we are going to assume that
N is so large that the limit N → ∞ is a reasonable approximation. We will
use the same basis for the spinors as in Problem Set 3. In this basis, the two-
dimensional γ-matrices are given in terms of Pauli matrices: γ0 = σ1, γ1 = iσ2
and γ5 = −σ3. Recall the notation: /∂ = ∂µγ

µ = γ0∂0 − γ1∂1.
Note: here we defined a coupling constant g0 which differs from the coupling
constant g we defined earlier just by a scale factor, g = 2g0/N .

1. The Lagrangian of this system contains an interaction term which is quar-
tic in the Fermi fields. Instead of using straightforward perturbation the-
ory you will study this system in the large N limit. In order to do that
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you first need to verify the following Gaussian identity, also known as a
Hubbard-Stratonovich transformation:

∫

Dσ(x) e
i

∫

d2x

[

−σ
2(x)

2
−
√

g0
N
ψ̄(x)ψ(x)σ(x)

]

= N e
i

∫

d2x
g0
2N

(

ψ̄ψ
)2

(3)
where N is a suitable normalization constant, and

ψ̄ψ ≡
N
∑

a=1

ψ̄a(x)ψa(x) (4)

2. Use an identity of the type of the one derived in 1), involving two scalar
fields σ(x) and ω(x), to write the Lagrangian of the Chiral Gross-Neveu
model in a form which is quadratic in the Fermi fields.

3. In Problem Set 3 you found that this model is invariant under the con-
tinuous global chiral transformation ψa = ei θγ5ψ′

a. What transformation
law should the scalar fields σ and ω satisfy?. How are these fields related
to the operators ∆0 and ∆5 of Problem Set 3?.

4. Integrate out the Fermi fields and find the effective action for the scalar
fields σ and ω. Watch for the factors of N and be careful with the signs!.
By an appropriate rescaling of the scalar fields show that the effective
action has the form Seff = NS̄. Determine the form of S̄.

5. Now you will consider the limit N → ∞. Find the equation of Saddle-
Point Equations which determine the average values of the scalar fields
in this limit. Find the solution of the Saddle-Point Equations with low-
est energy. Is the solution unique?. In order to compute the integrals,

first do the traces over the Dirac indices. The resulting expressions in-

volve integrals that you should Wick rotate to the Euclidean domain.

To regularize the integrals use dimensional regularization in 2 + ǫ dimen-

sions. What quantities need to be renormalized in order to make the
Saddle-Point Equations finite?. How many renormalization constants do
you need?. Give your answers in terms of coupling constant and wave
function renormalizations. Be careful to include the dependence in the
dimensionality 2 + ǫ. Determine the renormalization constants using the
minimal subtraction scheme.

6. Compute the β-function for the dimensionless renormalized coupling con-
stant t you derived in section 1.5. Find its fixed points and flows in 1 + 1
dimensions. Solve the differential equation β(t) = κ ∂t

∂κ
, where κ is the

momentum scale. Determine the asymptotic behavior of t in the limit
κ→ ∞. Is the interaction term relevant, irrelevant or marginal?.

7. Use the results of the previous sections to write the Saddle-Point Equa-
tions in term of renormalized quantities alone. In particular, find the
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dependence of the average values of the scalar fields on the renormalized
coupling constant.

8. Consider now the Fermion propagator in the N → ∞ limit. Are the
Fermions massive or massless?. If the former is true, what is the value of
the Fermion mass and how does it relate to the expectation values of the
scalar fields?.

9. Find the renormalized effective action for the scalar fields σ and ω to lead-

ing order in the 1
N

expansion, i.e. to order 1
N
. Determine the renormalized

propagator of the scalar fields at this order. Are the scalar fields massive,
or massless?.

10. Consider now the effect of a field that breaks the chiral symmetry. The
extra term in the Lagrangian is Lsources given by

Lsources = H0(x)ψ̄a(x)ψa(x) +H5(x)ψ̄a(x)γ5ψa(x) (5)

Find the new effective action of this theory in the presence of these sym-
metry breaking fields. Derive the modified Saddle-Point Equations. Solve
the new Saddle-Point Equations for the case H0(x) = H and H5(x) = 0.

11. Repeat the renormalization procedure employed for the theory without
sources, now for the case with sources present. Be careful to include
a wave function renormalization. Derive the renormalized Saddle-Point
Equations. Renormalize the propagators as in section 9.

12. By functionally differentiating the path integral with respect to the sources
derive a equation of identities which relate expectation values of the scalar
fields σ and ω to expectation values of the Fermion bilinears ψ̄ψ and ψ̄γ5ψ.
In particular find a formula which relates the propagators of σ and ω to
the propagators of the Fermion bilinears.

13. Use the Ward Identity you derived in Problem Set 1 to derive a relation
between the two point functions of the scalar fields at zero momentum,
and the external symmetry breaking field. Do the results you found in
section 9 satisfy these relations?.

14. Derive the renormalization group equations (Callan-Symanzik) satisfied
by the scalar fields in the absence of external sources. Solve these Callan-
Symanzik equations in terms of a momentum rescaling factor ρ and a
running coupling constant.
Note: Unlike renormalized perturbation theory, here you found a solution
of the RG equations that holds for all values of the coupling constant.
This is possible because of the large N limit, which is non-perturbative in
the coupling constant.

15. Use the solutions of section 14 to find the asymptotic behavior of the two
point functions of the scalar fields at large momenta.
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Useful Formulas (Euclidean metric)
Let A and B be two operators (or matrices), then

Tr ln (A+B) = Tr lnA+Tr ln
(

I +A−1B
)

and

ln(1 + x) = −
∞
∑

n=1

(−1)n

n
xn

where A−1 is the inverse of the operator A, and I is the identity operator.
Hint: you can use the following identities to derive your expansion:

Tr ln
(

i/∂ +M + δM
)

= Tr ln
(

i/∂ +M
)

+Tr
(

I +
(

i/∂ +M
)

−1
δM

)

and

Tr
(

I +
(

i/∂ +M
)

−1
δM

)

=

∫

d2x
∑

αβ

Sαβ(x, x)δMβα(x, x)

−1

2

∫

d2x

∫

d2x′
∑

αβα′β′

Sαβ(x, x
′)δMβα′(x′, x′)Sα′β′(x′, x)δMβ′α(x, x) + . . .

where Sαβ(x, y) is the Dirac propagator

Sαβ(x, y) = 〈x, α| 1

i/∂ +M
|y, β〉

where M is a (diagonal) operator.
Useful integral:

∫

dDq

(2π)D
1

(q2 + 2p · q +m2)
α =

1

(4π)
D
2

Γ(α− D
2 )

Γ(α)
(m2 − p2)

D
2
−α

where Γ(z) is the Gamma function

Γ(z) =

∫

∞

0

dt tze−t
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2 The free massless scalar field fixed point in
D = 2 space-time dimensions

Consider a free massless scalar field φ(x) in D = 2 Euclidean dimensions, x =
(x1, x2). This system is known in Statistical Mechanics as the Gaussian Model.
The (Euclidean) Lagrangian density is

L =
K

2
(∇φ)2 (6)

where K is a positive real parameter (a “coupling constant”). The Euclidean
propagator for this system in a region of linear size L ≡ m−1 (a very large disk)
is

G(x− x
′) = 〈φ(x)φ(x′)〉 = 1

K

∫

d2p

(2π)2
eip·(x−x

′)

p2 +m2
(7)

This formula is valid for |x− x
′| ≪ m−1 = L where the propagator takes the

form

G(x− x
′) = − 1

4πK
ln

( |x− x
′|2 + a2

L2

)

(8)

where a is a short distance cutoff. You will use this propagator in the rest of
this problem.

1. Scale Invariance: Show that S[φ] invariant under scale transformations

(dilations)
x → x

′ = λx (9)

where λ > 0 is a positive real number.

2. Operators: Consider the vertex operators Vq(x) = eiqφ(x), where q is an
integer. Add a source term to the action of the form

J(x) = i

N
∑

j=1

qjδ
(2)(x− xj) (10)

to show that the correlation function of N vertex operators

〈Vq1 (x1) . . . VqN (xN )〉 (11)

is invariant under the shift φ(x) → φ(x) + α (with α arbitrary) only if
∑N

j=1 qj = 0.

3. Correlators: Show that the correlation functions of N vertex operators
with “charges” q1, . . . , qN are given by

〈Vq1 (x1) . . . VqN (xN )〉 = e

−





N
∑

j=1

qj





2

G(0)−
N
∑

j>j′=1

qjqj′ [G(xj − xj′)−G(0)]

(12)
Show that, in the L→ ∞ limit, these correlation functions vanish identi-
cally unless the “charge neutrality” condition,

∑N
j=1 qj = 0 is satisfied.
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4. Two Point Function: Use the expression you just derived to compute the
explicit form of the correlation function of two vertex operators

G(2)
q (x− x

′) = 〈Vq(x)V−q(x
′)〉 (13)

Show that the scaling dimension ∆q of the vertex operator Vq is

∆q =
q2

4πK
(14)

5. Three Point Function: Show that the correlation function of three vertex
operators Vq1(x1), Vq2(x2) and Vq3(x3) is given by

〈Vq1 (x1)Vq2 (x2)Vq3 (x3)〉 =
1

|x1 − x2|∆12 |x2 − x3|∆23 |x3 − x1|∆31

(15)

with q1 + q2 + q3 = 0. Show that ∆12 = ∆q1 +∆q2 −∆q3 , ∆23 = ∆q2 +
∆q3 −∆q1 and ∆31 = ∆q3 +∆q1 −∆q2 .

6. Scaling Dimensions: Suppose we were to add to the free field fixed point
Lagrangian a perturbation of the form

Lint = g cos(qφ(x)) =
g

2
(Vq(x) + V−q(x)) (16)

where g is a coupling constant. and q ∈ Z. Determine the values of K
for which values of q this perturbation is a) marginal, b) relevant and
c) irrelevant. Use these results to write down the renormalization group
β-function β(g) to linear order in the coupling constant g.

7. Operator Product Expansion (OPE).

(a) Show that the operators {Vqi(x)} obey an OPE of the form

Vq1(x1)Vq2 (x2) ∼
Cq1,q2,q1+q2

|x1 − x2|µq1,q2

Vq1+q2

(

x1 + x2
2

)

as x1 → x2. Use the results of the above subsections to find the
coefficient Cq1,q2,q1+q2 and the exponent µq1,q2 .

(b) Show that the operators Vq(x) and V−q(y) obey an OPE of the form

Vq(x)V−q(y) ∼
1

|x− y|ηq
+

Cq

|x− y|µq
: (∇φ)2 (x + y

2
) :

as x → y, where : (∇φ)2 (x) := (∇φ)2 (x) − 〈(∇φ)2 (x)〉. Find the
coefficient Cq and the exponents ηq and µq.

(c) Show that the OPE of the operator E(x) =: (∇φ)2 (x) : with itself
does not contain the operator E(x): i.e. CEEE = 0.
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8. Renormalization Group: Let us now consider the sine-Gordon theory,
whose (Euclidean) Lagrangian density is

L =
K

2
(∇φ)2 + g

2
(Vq(x) + V−q(x)) (17)

where K and g play the role of the coupling constants. Use the results
of the OPE of the previous part to construct the RG beta-functions for
the “stiffness” K (this effect can also be regarded as a wave function
renormalization) and the coupling constant g, up to quadratic order in g.

Note: the free scalar field with the restriction that the only allowed operators are
the vertex operators with integer-valued “charge” q is an example of a conformal

field theory. It is known as the compactified boson. In string theory the field φ
is regarded as the coordinate of a bosonic string on a circle of radius R. The
restriction implies that the boson has a compactification radius R = 1. When
K 6= 1 the boson has effectively a compactification radius R =

√
K.
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